These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 16810451)
1. Desulfurization of dibenzothiophene by Bacillus subtilis recombinants carrying dszABC and dszD genes. Ma T; Li G; Li J; Liang F; Liu R Biotechnol Lett; 2006 Jul; 28(14):1095-100. PubMed ID: 16810451 [TBL] [Abstract][Full Text] [Related]
2. [Construction and evaluation of a genetic engineered strain for biodesulfurization]. Li H; Yu Z; Xiong X; Li Y; Li X Sheng Wu Gong Cheng Xue Bao; 2008 Dec; 24(12):2034-40. PubMed ID: 19306572 [TBL] [Abstract][Full Text] [Related]
3. Biodesulfurization of dibenzothiophene by recombinant Gordonia alkanivorans RIPI90A. Shavandi M; Sadeghizadeh M; Zomorodipour A; Khajeh K Bioresour Technol; 2009 Jan; 100(1):475-9. PubMed ID: 18653330 [TBL] [Abstract][Full Text] [Related]
4. [Co-expression of Rhodococcus sp. DS-3 dszABC and dszD gene with incompatible plasmids in Escherichia coli]. Li GQ; Ma T; Li JH; Li H; Liu RL Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):275-9. PubMed ID: 16736591 [TBL] [Abstract][Full Text] [Related]
5. Identification and functional analysis of the genes encoding dibenzothiophene-desulfurizing enzymes from thermophilic bacteria. Kirimura K; Harada K; Iwasawa H; Tanaka T; Iwasaki Y; Furuya T; Ishii Y; Kino K Appl Microbiol Biotechnol; 2004 Nov; 65(6):703-13. PubMed ID: 15221222 [TBL] [Abstract][Full Text] [Related]
6. Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis. Li GQ; Li SS; Zhang ML; Wang J; Zhu L; Liang FL; Liu RL; Ma T Appl Environ Microbiol; 2008 Feb; 74(4):971-6. PubMed ID: 18165370 [TBL] [Abstract][Full Text] [Related]
7. Biodesulfurization of benzothiophene and dibenzothiophene by a newly isolated Rhodococcus strain. Tanaka Y; Matsui T; Konishi J; Maruhashi K; Kurane R Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):325-8. PubMed ID: 12111165 [TBL] [Abstract][Full Text] [Related]
8. Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp. A11-2. Ishii Y; Konishi J; Okada H; Hirasawa K; Onaka T; Suzuki M Biochem Biophys Res Commun; 2000 Apr; 270(1):81-8. PubMed ID: 10733908 [TBL] [Abstract][Full Text] [Related]
9. Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Hirasawa K; Ishii Y; Kobayashi M; Koizumi K; Maruhashi K Biosci Biotechnol Biochem; 2001 Feb; 65(2):239-46. PubMed ID: 11302154 [TBL] [Abstract][Full Text] [Related]
10. Effect of sulfur sources on specific desulfurization activity of Rhodococcus erythropolis KA2-5-1 in exponential fed-batch culture. Konishi M; Kishimoto M; Omasa T; Katakura Y; Shioya S; Ohtake H J Biosci Bioeng; 2005 Mar; 99(3):259-63. PubMed ID: 16233786 [TBL] [Abstract][Full Text] [Related]
11. [Comparison of the desulfurization activity among several bacteria and analysis of the conservation of their desulfurization genes]. Xiong XC; Li WL; Li X; Xing JM; Liu HZ Wei Sheng Wu Xue Bao; 2005 Oct; 45(5):733-7. PubMed ID: 16342766 [TBL] [Abstract][Full Text] [Related]
12. Improvement of dibenzothiophene desulfurization activity by removing the gene overlap in the dsz operon. Li GQ; Ma T; Li SS; Li H; Liang FL; Liu RL Biosci Biotechnol Biochem; 2007 Apr; 71(4):849-54. PubMed ID: 17420595 [TBL] [Abstract][Full Text] [Related]
13. Differential desulfurization of dibenzothiophene by newly identified MTCC strains: Influence of Operon Array. Bhanjadeo MM; Rath K; Gupta D; Pradhan N; Biswal SK; Mishra BK; Subudhi U PLoS One; 2018; 13(3):e0192536. PubMed ID: 29518089 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of vitreoscilla hemoglobin. Xiong X; Xing J; Li X; Bai X; Li W; Li Y; Liu H Appl Environ Microbiol; 2007 Apr; 73(7):2394-7. PubMed ID: 17293512 [TBL] [Abstract][Full Text] [Related]
15. Recombinant Rhodococcus sp. strain T09 can desulfurize DBT in the presence of inorganic sulfate. Matsui T; Noda K; Tanaka Y; Maruhashi K; Kurane R Curr Microbiol; 2002 Oct; 45(4):240-4. PubMed ID: 12192519 [TBL] [Abstract][Full Text] [Related]
16. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Chien LJ; Lee CK Biotechnol Prog; 2007; 23(5):1017-22. PubMed ID: 17691809 [TBL] [Abstract][Full Text] [Related]
17. Flux-based analysis of sulfur metabolism in desulfurizing strains of Rhodococcus erythropolis. Aggarwal S; Karimi IA; Lee DY FEMS Microbiol Lett; 2011 Feb; 315(2):115-21. PubMed ID: 21182538 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the emulsion characteristics of Rhodococcus erythropolis and Escherichia coli SOXC-5 cells expressing biodesulfurization genes. Borole AP; Kaufman EN; Grossman MJ; Minak-Bernero V; Bare R; Lee MK Biotechnol Prog; 2002; 18(1):88-93. PubMed ID: 11822905 [TBL] [Abstract][Full Text] [Related]
19. Effect of electrokinetics on biodesulfurization of the model oil by Rhodococcus erythropolis PTCC1767 and Bacillus subtilis DSMZ 3256. Boshagh F; Mokhtarani B; Mortaheb HR J Hazard Mater; 2014 Sep; 280():781-7. PubMed ID: 25244073 [TBL] [Abstract][Full Text] [Related]
20. Enhanced desulfurization in a transposon-mutant strain of Rhodococcus erythropolis. Watanabe K; Noda K; Maruhashi K Biotechnol Lett; 2003 Aug; 25(16):1299-304. PubMed ID: 14514056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]