BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 16810451)

  • 21. Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain.
    Davoodi-Dehaghani F; Vosoughi M; Ziaee AA
    Bioresour Technol; 2010 Feb; 101(3):1102-5. PubMed ID: 19819129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic structure and promoter analysis of the dsz operon for dibenzothiophene biodesulfurization from Gordonia alkanivorans RIPI90A.
    Shavandi M; Sadeghizadeh M; Khajeh K; Mohebali G; Zomorodipour A
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1455-61. PubMed ID: 20414649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recombinant Pseudomonas putida carrying both the dsz and hcu genes can desulfurize dibenzothiophene in n-tetradecane.
    Noda K; Watanabe K; Maruhashi K
    Biotechnol Lett; 2003 Jul; 25(14):1147-50. PubMed ID: 12967002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning of a rhodococcal promoter using a transposon for dibenzothiophene biodesulfurization.
    Noda K; Watanabe K; Maruhashi K
    Biotechnol Lett; 2003 Feb; 25(3):1875-82. PubMed ID: 12882585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial desulfurization of alkylated dibenzothiophene and alkylated benzothiophene by recombinant Rhodococcus sp. strain T09.
    Matsui T; Hirasawa K; Konishi J; Tanaka Y; Maruhashi K; Kurane R
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):196-200. PubMed ID: 11499930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The innate ability of Rhodococcus sp. SDUZAWQ to tolerate sulfur in petroleum].
    Tong MY; Cai XF; Zeng YY; Liu RL; Xu P
    Wei Sheng Wu Xue Bao; 2005 Aug; 45(4):576-9. PubMed ID: 16245874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of Microbial Biodesulfurization via Genetic Engineering and Adaptive Evolution.
    Wang J; Butler RR; Wu F; Pombert JF; Kilbane JJ; Stark BC
    PLoS One; 2017; 12(1):e0168833. PubMed ID: 28060828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the dszABC genes of Gordonia amicalis F.5.25.8 and identification of conserved protein and DNA sequences.
    Kilbane JJ; Robbins J
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):843-51. PubMed ID: 17342529
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Functional correlation of dibenzothiophene and benzothiophene desulfurization enzymes].
    Li SS; Li GQ; Ma T; Liang FL; Liu RL
    Huan Jing Ke Xue; 2008 Nov; 29(11):3166-71. PubMed ID: 19186822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and characterization of a moderate thermophile, Mycobacterium phlei GTIS10, capable of dibenzothiophene desulfurization.
    Kayser KJ; Cleveland L; Park HS; Kwak JH; Kolhatkar A; Kilbane JJ
    Appl Microbiol Biotechnol; 2002 Sep; 59(6):737-45. PubMed ID: 12226734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Description of by-product inhibiton effects on biodesulfurization of dibenzothiophene in biphasic media.
    Caro A; Boltes K; Letón P; García-Calvo E
    Biodegradation; 2008 Jul; 19(4):599-611. PubMed ID: 18038247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The cbs mutant strain of Rhodococcus erythropolis KA2-5-1 expresses high levels of Dsz enzymes in the presence of sulfate.
    Tanaka Y; Yoshikawa O; Maruhashi K; Kurane R
    Arch Microbiol; 2002 Nov; 178(5):351-7. PubMed ID: 12375103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by a single bacterial strain.
    Kobayashi M; Onaka T; Ishii Y; Konishi J; Takaki M; Okada H; Ohta Y; Koizumi K; Suzuki M
    FEMS Microbiol Lett; 2000 Jun; 187(2):123-6. PubMed ID: 10856644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Screening, identification of the strain Fds-1 for microbial desulfurization specially and its use in diesel oil desulfurization].
    Ma T; Tong MY; Zhang Q; Liang FL; Liu RL
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):104-10. PubMed ID: 16579475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A flavin reductase stimulates DszA and DszC proteins of Rhodococcus erythropolis IGTS8 in vitro.
    Xi L; Squires CH; Monticello DJ; Childs JD
    Biochem Biophys Res Commun; 1997 Jan; 230(1):73-5. PubMed ID: 9020064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodesulfurization of a system containing synthetic fuel using Rhodococcus erythropolis ATCC 4277.
    Maass D; de Oliveira D; de Souza AA; Souza SM
    Appl Biochem Biotechnol; 2014 Nov; 174(6):2079-85. PubMed ID: 25163887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Roles of sulfite oxidoreductase and sulfite reductase in improving desulfurization by Rhodococcus erythropolis.
    Aggarwal S; Karimi IA; Kilbane Ii JJ; Lee DY
    Mol Biosyst; 2012 Oct; 8(10):2724-32. PubMed ID: 22832889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic engineering of hydrophobic Rhodococcus opacus for biodesulfurization in oil-water biphasic reaction mixtures.
    Kawaguchi H; Kobayashi H; Sato K
    J Biosci Bioeng; 2012 Mar; 113(3):360-6. PubMed ID: 22099375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative studies of phenotypic and genetic characteristics between two desulfurizing isolates of Rhodococcus erythropolis and the well-characterized R. erythropolis strain IGTS8.
    Santos SC; Alviano DS; Alviano CS; Goulart FR; de Pádula M; Leitão AC; Martins OB; Ribeiro CM; Sassaki MY; Matta CP; Bevilaqua J; Sebastián GV; Seldin L
    J Ind Microbiol Biotechnol; 2007 Jun; 34(6):423-31. PubMed ID: 17333091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De-repression and comparison of oil-water separation activity of the dibenzothiophene desulfurizing bacterium, Mycobacterium sp. G3.
    Takada M; Nomura N; Okada H; Nakajima-Kambe T; Nakahara T; Uchiyama H
    Biotechnol Lett; 2005 Jun; 27(12):871-4. PubMed ID: 16086250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.