These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 16810659)

  • 1. Electrochemically driven three-phase interlines into insulator compounds: electroreduction of solid SiO2 in molten CaCl2.
    Xiao W; Jin X; Deng Y; Wang D; Hu X; Chen GZ
    Chemphyschem; 2006 Aug; 7(8):1750-8. PubMed ID: 16810659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemistry at conductor/insulator/electrolyte three-phase interlines: A thin layer model.
    Deng Y; Wang D; Xiao W; Jin X; Hu X; Chen GZ
    J Phys Chem B; 2005 Jul; 109(29):14043-51. PubMed ID: 16852763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-phase interlines electrochemically driven into insulator compounds: a penetration model and its verification by electroreduction of solid AgCl.
    Xiao W; Jin X; Deng Y; Wang D; Chen GZ
    Chemistry; 2007; 13(2):604-12. PubMed ID: 16991172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnesia-stabilised zirconia solid electrolyte assisted electrochemical investigation of iron ions in a SiO
    Gao Y; Yang C; Zhang C; Qin Q; Chen GZ
    Phys Chem Chem Phys; 2017 Jun; 19(24):15876-15890. PubMed ID: 28589201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Si nanowires by the electrochemical reduction of SiO2 with Ni or NiO additives.
    Fang S; Wang H; Yang J; Yu B; Lu S
    Faraday Discuss; 2016 Aug; 190():433-49. PubMed ID: 27203479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-aided control of electrolysis of solid Nb2O5 in molten CaCl2.
    Wu T; Xiao W; Jin X; Liu C; Wang D; Chen GZ
    Phys Chem Chem Phys; 2008 Apr; 10(13):1809-18. PubMed ID: 18350186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electrochemical reduction processes of solid compounds in high temperature molten salts.
    Xiao W; Wang D
    Chem Soc Rev; 2014 May; 43(10):3215-28. PubMed ID: 24535552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO
    Dong Y; Slade T; Stolt MJ; Li L; Girard SN; Mai L; Jin S
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14453-14457. PubMed ID: 28952181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Production of Si without Generation of CO
    Ge J; Zou X; Almassi S; Ji L; Chaplin BP; Bard AJ
    Angew Chem Int Ed Engl; 2019 Nov; 58(45):16223-16228. PubMed ID: 31483553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemically modulated liquid-liquid extraction of ions.
    Berduque A; Sherburn A; Ghita M; Dryfe RA; Arrigan DW
    Anal Chem; 2005 Nov; 77(22):7310-8. PubMed ID: 16285680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells.
    Lee S; Lee E
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3713-6. PubMed ID: 18047043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic motion in polypyrrole-cellulose composites: trap release mechanism during potentiostatic reduction.
    Strømme M; Frenning G; Razaq A; Gelin K; Nyholm L; Mihranyan A
    J Phys Chem B; 2009 Apr; 113(14):4582-9. PubMed ID: 19338363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrosynthesis of Cu-Se films on copper electrodes in alkaline media: a voltammetric, electrochemical quartz crystal microbalance and I/t transient study.
    Córdova R; López C; Orellana M; Grez P; Schrebler R; Del Río R
    J Phys Chem B; 2005 Mar; 109(8):3212-21. PubMed ID: 16851343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabricating Silicon Nanotubes by Electrochemical Exfoliation and Reduction of Layer-Structured CaSiO
    Wang F; Liu W; Ma Y; Chen D; Li P; Yin H; Li W; Wang D
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30668-30677. PubMed ID: 34165965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays--simulations and experiments.
    Strutwolf J; Scanlon MD; Arrigan DW
    Analyst; 2009 Jan; 134(1):148-58. PubMed ID: 19082187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport processes at alpha-quartz-water interfaces: insights from first-principles molecular dynamics simulations.
    Adeagbo WA; Doltsinis NL; Klevakina K; Renner J
    Chemphyschem; 2008 May; 9(7):994-1002. PubMed ID: 18404743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving a narrow size distribution of Au particles at a precise depth in SiO2 by segregation of Au precipitates.
    Charnvanichborikarn S; Conway MJ; Wong-Leung J; Williams JS
    Nanotechnology; 2009 May; 20(18):185603. PubMed ID: 19420619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning photoinduced impedance microscopy using amorphous silicon photodiode structures.
    Zhou Y; Chen L; Krause S; Chazalviel JN
    Anal Chem; 2007 Aug; 79(16):6208-14. PubMed ID: 17628116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrodeposition of platinum on highly oriented pyrolytic graphite. Part I: electrochemical characterization.
    Lu G; Zangari G
    J Phys Chem B; 2005 Apr; 109(16):7998-8007. PubMed ID: 16851935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Cost-Effective Manufacturing of Silicon Solar Cells: Electrodeposition of High-Quality Si Films in a CaCl
    Yang X; Ji L; Zou X; Lim T; Zhao J; Yu ET; Bard AJ
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):15078-15082. PubMed ID: 28902971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.