BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16810697)

  • 1. Competition of nitroxyl contrast agents as an in vivo tissue redox probe: comparison of pharmacokinetics by the bile flow monitoring (BFM) and blood circulating monitoring (BCM) methods using X-band EPR and simulation of decay profiles.
    Okajo A; Matsumoto K; Mitchell JB; Krishna MC; Endo K
    Magn Reson Med; 2006 Aug; 56(2):422-31. PubMed ID: 16810697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of volume limitation for tissue redox status measurements using nitroxyl contrast agents: a comparison of X-band EPR bile flow monitoring (BFM) method and 300 MHz in vivo EPR measurement.
    Ui I; Okajo A; Endo K; Utsumi H; Matsumoto K
    J Magn Reson; 2006 Jul; 181(1):107-12. PubMed ID: 16632393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel pharmacokinetic measurement using electron paramagnetic resonance spectroscopy and simulation of in vivo decay of various nitroxyl spin probes in mouse blood.
    Matsumoto K; Krishna MC; Mitchell JB
    J Pharmacol Exp Ther; 2004 Sep; 310(3):1076-83. PubMed ID: 15105413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain contrasting ability of blood-brain-barrier-permeable nitroxyl contrast agents for magnetic resonance redox imaging.
    Matsumoto K; Yamasaki T; Nakamura M; Ishikawa J; Ueno M; Nakanishi I; Sekita A; Ozawa Y; Kamada T; Aoki I; Yamada K
    Magn Reson Med; 2016 Sep; 76(3):935-45. PubMed ID: 26414669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative studies with EPR and MRI on the in vivo tissue redox status estimation using redox-sensitive nitroxyl probes: influence of the choice of the region of interest.
    Matsumoto KI; Mitchell JB; Krishna MC
    Free Radic Res; 2018 Feb; 52(2):248-255. PubMed ID: 29320888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular and extracellular redox environments surrounding redox-sensitive contrast agents under oxidative Atmosphere.
    Okajo A; Ui I; Manda S; Nakanishi I; Matsumoto K; Anzai K; Endo K
    Biol Pharm Bull; 2009 Apr; 32(4):535-41. PubMed ID: 19336880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitroxyl Radical as a Theranostic Contrast Agent in Magnetic Resonance Redox Imaging.
    Matsumoto KI; Nakanishi I; Zhelev Z; Bakalova R; Aoki I
    Antioxid Redox Signal; 2022 Jan; 36(1-3):95-121. PubMed ID: 34148403
    [No Abstract]   [Full Text] [Related]  

  • 8. In vivo L-band ESR and quantitative pharmacokinetic analysis of stable spin probes in rats and mice.
    Nishino N; Yasui H; Sakurai H
    Free Radic Res; 1999 Jul; 31(1):35-51. PubMed ID: 10489118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hydrogen peroxide in redox status estimation using nitroxyl spin probe.
    Ui I; Okajo A; Endo K; Utsumi H; Matsumoto K
    Free Radic Biol Med; 2004 Dec; 37(12):2012-7. PubMed ID: 15544919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially resolved time-course studies of free radical reactions with an EPRI/MRI fusion technique.
    Hyodo F; Yasukawa K; Yamada K; Utsumi H
    Magn Reson Med; 2006 Oct; 56(4):938-43. PubMed ID: 16964613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic reduction-resistant nitroxyl spin probes with spirocyclohexyl rings.
    Okazaki S; Mannan MA; Sawai K; Masumizu T; Miura Y; Takeshita K
    Free Radic Res; 2007 Oct; 41(10):1069-77. PubMed ID: 17886028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utility decay rates of t(1)-weighted magnetic resonance imaging contrast based on redox-sensitive paramagnetic nitroxyl contrast agents.
    Matsumoto K
    Biol Pharm Bull; 2009 Apr; 32(4):711-6. PubMed ID: 19336910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EPR signal reduction kinetic of several nitroxyl derivatives in blood in vitro and in vivo.
    Zhelev Z; Matsumoto K; Gadjeva V; Bakalova R; Aoki I; Zheleva A; Anzai K
    Gen Physiol Biophys; 2009 Dec; 28(4):356-62. PubMed ID: 20097958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox imaging of skeletal muscle using in vivo DNP-MRI and its application to an animal model of local inflammation.
    Eto H; Hyodo F; Kosem N; Kobayashi R; Yasukawa K; Nakao M; Kiniwa M; Utsumi H
    Free Radic Biol Med; 2015 Dec; 89():1097-104. PubMed ID: 26505925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitroxyl radicals for labeling of conventional therapeutics and noninvasive magnetic resonance imaging of their permeability for blood-brain barrier: relationship between structure, blood clearance, and MRI signal dynamic in the brain.
    Zhelev Z; Bakalova R; Aoki I; Matsumoto K; Gadjeva V; Anzai K; Kanno I
    Mol Pharm; 2009; 6(2):504-12. PubMed ID: 19718801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo measurement of redox status in streptozotocin-induced diabetic rat using targeted nitroxyl probes.
    Yamada K; Inoue D; Matsumoto S; Utsumi H
    Antioxid Redox Signal; 2004 Jun; 6(3):605-11. PubMed ID: 15130287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unexpected rapid aerobic transformation of 2,2,6,6-tetraethyl-4-oxo(piperidin-1-yloxyl) radical by cytochrome P450 in the presence of NADPH: Evidence against a simple reduction of the nitroxide moiety to the hydroxylamine.
    Babić N; Orio M; Peyrot F
    Free Radic Biol Med; 2020 Aug; 156():144-156. PubMed ID: 32561320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-sensitive radical-containing-nanoparticle (RNP) for the L-band-EPR imaging of low pH circumstances.
    Yoshitomi T; Suzuki R; Mamiya T; Matsui H; Hirayama A; Nagasaki Y
    Bioconjug Chem; 2009 Sep; 20(9):1792-8. PubMed ID: 19685867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo evaluation of novel nitroxyl radicals with reduction stability.
    Kinoshita Y; Yamada K; Yamasaki T; Mito F; Yamato M; Kosem N; Deguchi H; Shirahama C; Ito Y; Kitagawa K; Okukado N; Sakai K; Utsumi H
    Free Radic Biol Med; 2010 Dec; 49(11):1703-9. PubMed ID: 20828609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of free radical formation by beta-ray irradiation in rat liver.
    Matsumoto K; Okajo A; Kobayashi T; Mitchell JB; Krishna MC; Endo K
    J Biochem Biophys Methods; 2005 May; 63(2):79-90. PubMed ID: 15896849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.