These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 16813334)
1. Differences in susceptibility and physiological fitness of Mexican field Trichoplusia ni strains exposed to Bacillus thuringiensis. Tamez-Guerra P; Damas G; Iracheta MM; Oppert B; Gomez-Flores R; Rodríguez-Padilla C J Econ Entomol; 2006 Jun; 99(3):937-45. PubMed ID: 16813334 [TBL] [Abstract][Full Text] [Related]
2. Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella. Sayyed AH; Raymond B; Ibiza-Palacios MS; Escriche B; Wright DJ Appl Environ Microbiol; 2004 Dec; 70(12):7010-7. PubMed ID: 15574894 [TBL] [Abstract][Full Text] [Related]
3. Inheritance and fitness costs of resistance to Bacillus thuringiensis toxin Cry2Ad in laboratory strains of the diamondback moth, Plutella xylostella (L.). Liao J; Xue Y; Xiao G; Xie M; Huang S; You S; Wyckhuys KAG; You M Sci Rep; 2019 Apr; 9(1):6113. PubMed ID: 30992491 [TBL] [Abstract][Full Text] [Related]
4. Resistance to the Cry1Ac delta-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Akhurst RJ; James W; Bird LJ; Beard C J Econ Entomol; 2003 Aug; 96(4):1290-9. PubMed ID: 14503603 [TBL] [Abstract][Full Text] [Related]
5. Different cross-resistance patterns in the diamondback moth (Lepidoptera: Plutellidae) resistant to Bacillus thuringiensis toxin Cry1C. Zhao JZ; Li YX; Collins HL; Cao J; Earle ED; Shelton AM J Econ Entomol; 2001 Dec; 94(6):1547-52. PubMed ID: 11777062 [TBL] [Abstract][Full Text] [Related]
6. The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella. Raymond B; Sayyed AH; Wright DJ J Invertebr Pathol; 2006 Oct; 93(2):114-20. PubMed ID: 16905146 [TBL] [Abstract][Full Text] [Related]
7. Inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a greenhouse-derived strain of cabbage looper (Lepidoptera: Noctuidae). Kain WC; Zhao JZ; Janmaat AF; Myers J; Shelton AM; Wang P J Econ Entomol; 2004 Dec; 97(6):2073-8. PubMed ID: 15666767 [TBL] [Abstract][Full Text] [Related]
8. Lack of fitness costs and inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a near-isogenic strain of Plutella xylostella (Lepidoptera: Plutellidae). Zhu X; Yang Y; Wu Q; Wang S; Xie W; Guo Z; Kang S; Xia J; Zhang Y Pest Manag Sci; 2016 Feb; 72(2):289-97. PubMed ID: 25684167 [TBL] [Abstract][Full Text] [Related]
9. Mutation of ABC transporter ABCA2 confers resistance to Bt toxin Cry2Ab in Trichoplusia ni. Yang X; Chen W; Song X; Ma X; Cotto-Rivera RO; Kain W; Chu H; Chen YR; Fei Z; Wang P Insect Biochem Mol Biol; 2019 Sep; 112():103209. PubMed ID: 31422154 [TBL] [Abstract][Full Text] [Related]
10. Characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella from China. Gong Y; Wang C; Yang Y; Wu S; Wu Y J Invertebr Pathol; 2010 Jun; 104(2):90-6. PubMed ID: 20167218 [TBL] [Abstract][Full Text] [Related]
11. Variation in susceptibility of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) in Australia to two Bacillus thuringiensis toxins. Bird LJ; Akhurst RJ J Invertebr Pathol; 2007 Feb; 94(2):84-94. PubMed ID: 17049552 [TBL] [Abstract][Full Text] [Related]
12. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.). Guo Z; Kang S; Zhu X; Wu Q; Wang S; Xie W; Zhang Y J Invertebr Pathol; 2015 Mar; 126():21-30. PubMed ID: 25595643 [TBL] [Abstract][Full Text] [Related]
13. Fitness of Bt-resistant cabbage loopers on Bt cotton plants. Tetreau G; Wang R; Wang P Plant Biotechnol J; 2017 Oct; 15(10):1322-1330. PubMed ID: 28273400 [TBL] [Abstract][Full Text] [Related]
14. Lack of relevant cross-resistance to Bt insecticide XenTari in strains of Spodoptera frugiperda (J. E. Smith) resistant to Bt maize. Horikoshi RJ; Bernardi O; Amaral FSAE; Miraldo LL; Durigan MR; Bernardi D; Silva SS; Omoto C J Invertebr Pathol; 2019 Feb; 161():1-6. PubMed ID: 30582929 [TBL] [Abstract][Full Text] [Related]
15. Cadherin-based resistance to Bacillus thuringiensis cotton in hybrid strains of pink bollworm: fitness costs and incomplete resistance. Carrière Y; Ellers-Kirk C; Biggs RW; Nyboer ME; Unnithan GC; Dennehy TJ; Tabashnik BE J Econ Entomol; 2006 Dec; 99(6):1925-35. PubMed ID: 17195656 [TBL] [Abstract][Full Text] [Related]
17. Sequence variation and differential splicing of the midgut cadherin gene in Trichoplusia ni. Zhang X; Kain W; Wang P Insect Biochem Mol Biol; 2013 Aug; 43(8):712-23. PubMed ID: 23743444 [TBL] [Abstract][Full Text] [Related]
18. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn. Dively GP; Venugopal PD; Finkenbinder C PLoS One; 2016; 11(12):e0169115. PubMed ID: 28036388 [TBL] [Abstract][Full Text] [Related]
19. Susceptibility of Plutella xylostella (L.) (Lepidoptera: Plutellidae) populations in Mexico to commercial formulations of Bacillus thuringiensis. Díaz-Gomez O; Rodríguez JC; Shelton AM; Lagunes A; Bujanos R J Econ Entomol; 2000 Jun; 93(3):963-70. PubMed ID: 10902356 [TBL] [Abstract][Full Text] [Related]
20. Down-regulation of a novel ABC transporter gene (Pxwhite) is associated with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). Guo Z; Kang S; Zhu X; Xia J; Wu Q; Wang S; Xie W; Zhang Y Insect Biochem Mol Biol; 2015 Apr; 59():30-40. PubMed ID: 25636859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]