BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16813407)

  • 1. Mechanistic studies of the oxidative N-dealkylation of a substrate tethered to carboxylate-bridged diiron(II) complexes, [Fe2(mu-O2CAr(Tol))2(O2CAr(Tol))2(N,N-Bn2en)2].
    Yoon S; Lippard SJ
    Inorg Chem; 2006 Jul; 45(14):5438-46. PubMed ID: 16813407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic analogue of the [Fe(2)(mu-OH)(2)(mu-O(2)CR)](3+) core of soluble methane monooxygenase hydroxylase via synthesis and dioxygen reactivity of carboxylate-bridged diiron(II) complexes.
    Lee D; Lippard SJ
    Inorg Chem; 2002 Feb; 41(4):827-37. PubMed ID: 11849083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of steric hindrance on the core geometry and sulfoxidation chemistry of carboxylate-rich diiron(II) complexes.
    Reisner E; Abikoff TC; Lippard SJ
    Inorg Chem; 2007 Nov; 46(24):10229-40. PubMed ID: 17973373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and oxidation of carboxylate-bridged diiron(II) complexes with substrates tethered to primary alkyl amine ligands.
    Carson EC; Lippard SJ
    J Inorg Biochem; 2006 May; 100(5-6):1109-17. PubMed ID: 16439023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization, and preliminary oxygenation studies of benzyl- and ethyl-substituted pyridine ligands of carboxylate-rich diiron(II) complexes.
    Carson EC; Lippard SJ
    Inorg Chem; 2006 Jan; 45(2):828-36. PubMed ID: 16411721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dioxygen-initiated oxidation of heteroatomic substrates incorporated into ancillary pyridine ligands of carboxylate-rich diiron(II) complexes.
    Carson EC; Lippard SJ
    Inorg Chem; 2006 Jan; 45(2):837-48. PubMed ID: 16411722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling dioxygen-activating centers in non-heme diiron enzymes: carboxylate shifts in diiron(II) complexes supported by sterically hindered carboxylate ligands.
    Lee D; Lippard SJ
    Inorg Chem; 2002 May; 41(10):2704-19. PubMed ID: 12005495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water induces a structural conversion and accelerates the oxygenation of carboxylate-bridged non-heme diiron enzyme synthetic analogues.
    Zhao M; Song D; Lippard SJ
    Inorg Chem; 2006 Aug; 45(16):6323-30. PubMed ID: 16878942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward functional carboxylate-bridged diiron protein mimics: achieving structural stability and conformational flexibility using a macrocylic ligand framework.
    Do LH; Lippard SJ
    J Am Chem Soc; 2011 Jul; 133(27):10568-81. PubMed ID: 21682286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water affects the stereochemistry and dioxygen reactivity of carboxylate-rich diiron(II) models for the diiron centers in dioxygen-dependent non-heme enzymes.
    Yoon S; Lippard SJ
    J Am Chem Soc; 2005 Jun; 127(23):8386-97. PubMed ID: 15941272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional mimic of dioxygen-activating centers in non-heme diiron enzymes: mechanistic implications of paramagnetic intermediates in the reactions between diiron(II) complexes and dioxygen.
    Lee D; Pierce B; Krebs C; Hendrich MP; Huynh BH; Lippard SJ
    J Am Chem Soc; 2002 Apr; 124(15):3993-4007. PubMed ID: 11942838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sterically hindered carboxylate ligands support water-bridged dimetallic centers that model features of metallohydrolase active sites.
    Lee D; Hung PL; Spingler B; Lippard SJ
    Inorg Chem; 2002 Feb; 41(3):521-31. PubMed ID: 11825079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative N-dealkylation of a carboxylate-bridged diiron(II) precursor complex by reaction with O2 affords the elusive [Fe2(mu-OH)2(mu-O2CR)](3+) core of soluble methane monooxygenase hydroxylase.
    Lee D; Lippard SJ
    J Am Chem Soc; 2001 May; 123(19):4611-2. PubMed ID: 11457252
    [No Abstract]   [Full Text] [Related]  

  • 14. Iron complexes of dendrimer-appended carboxylates for activating dioxygen and oxidizing hydrocarbons.
    Zhao M; Helms B; Slonkina E; Friedle S; Lee D; Dubois J; Hedman B; Hodgson KO; Fréchet JM; Lippard SJ
    J Am Chem Soc; 2008 Apr; 130(13):4352-63. PubMed ID: 18331028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of carboxylate-rich complexes having the [Fe2(mu-OH)2(mu-O2CR)]3+ and [Fe2(mu-O)(mu-O2CR)]3+ cores of O2-dependent diiron enzymes.
    Yoon S; Lippard SJ
    J Am Chem Soc; 2004 Mar; 126(9):2666-7. PubMed ID: 14995160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling features of the non-heme diiron cores in O2-activating enzymes through the synthesis, characterization, and oxidation of 1,8-naphthyridine-based complexes.
    Kuzelka J; Mukhopadhyay S; Spingler B; Lippard SJ
    Inorg Chem; 2003 Oct; 42(20):6447-57. PubMed ID: 14514321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (19)F NMR study of ligand dynamics in carboxylate-bridged diiron(II) complexes supported by a macrocyclic ligand.
    Minier MA; Lippard SJ
    Dalton Trans; 2015 Nov; 44(41):18111-21. PubMed ID: 26418547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-dependent reactions of diiron(II) carboxylate complexes.
    Yoon S; Lippard SJ
    J Am Chem Soc; 2004 Dec; 126(51):16692-3. PubMed ID: 15612685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of sulfide, phosphine, and benzyl substrates tethered to N-donor pyridine ligands in carboxylate-bridged diiron(II) complexes.
    Carson EC; Lippard SJ
    J Am Chem Soc; 2004 Mar; 126(11):3412-3. PubMed ID: 15025454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triptycene-based Bis(benzimidazole) Carboxylate-Bridged Biomimetic Diiron(II) Complexes.
    Li Y; Myae Soe CM; Wilson JJ; Tuang SL; Apfel UP; Lippard SJ
    Eur J Inorg Chem; 2013 Apr; 2013(12):2011-2019. PubMed ID: 23585728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.