BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16813410)

  • 1. Tren-based analogues of bacillibactin: structure and stability.
    Dertz EA; Xu J; Raymond KN
    Inorg Chem; 2006 Jul; 45(14):5465-78. PubMed ID: 16813410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacillibactin-mediated iron transport in Bacillus subtilis.
    Dertz EA; Xu J; Stintzi A; Raymond KN
    J Am Chem Soc; 2006 Jan; 128(1):22-3. PubMed ID: 16390102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic hydrolysis of trilactone siderophores: where chiral recognition occurs in enterobactin and bacillibactin iron transport.
    Abergel RJ; Zawadzka AM; Hoette TM; Raymond KN
    J Am Chem Soc; 2009 Sep; 131(35):12682-92. PubMed ID: 19673474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corynebactin and a serine trilactone based analogue: chirality and molecular modeling of ferric complexes.
    Bluhm ME; Hay BP; Kim SS; Dertz EA; Raymond KN
    Inorg Chem; 2002 Oct; 41(21):5475-8. PubMed ID: 12377042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of homochiral tris(2-alkyl-2-aminoethyl)amine derivatives from chiral alpha-amino aldehydes and their application in the synthesis of water soluble chelators.
    Hajela SP; Johnson AR; Xu J; Sunderland CJ; Cohen SM; Caulder DL; Raymond KN
    Inorg Chem; 2001 Jun; 40(13):3208-16. PubMed ID: 11399194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Siderophore-mediated iron transport in Bacillus subtilis and Corynebacterium glutamicum.
    Dertz EA; Stintzi A; Raymond KN
    J Biol Inorg Chem; 2006 Nov; 11(8):1087-97. PubMed ID: 16912897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural criteria for the rational design of selective ligands. 3. Quantitative structure-stability relationship for iron(III) complexation by tris-catecholamide siderophores.
    Hay BP; Dixon DA; Vargas R; Garza J; Raymond KN
    Inorg Chem; 2001 Jul; 40(16):3922-35. PubMed ID: 11466050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catecholate/salicylate heteropodands: demonstration of a catecholate to salicylate coordination change.
    Cohen SM; Raymond KN
    Inorg Chem; 2000 Aug, 7; 39(16):3624-31. PubMed ID: 11196825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corynebactin and enterobactin: related siderophores of opposite chirality.
    Bluhm ME; Kim SS; Dertz EA; Raymond KN
    J Am Chem Soc; 2002 Mar; 124(11):2436-7. PubMed ID: 11890782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosiderophores: synthesis of tris-hydroxamate siderophores based on a galactose or glycero central scaffold, Fe(III) complexation studies.
    Neff C; Bellot F; Waern JB; Lambert F; Brandel J; Serratrice G; Gaboriau F; Policar C
    J Inorg Biochem; 2012 Jul; 112():59-67. PubMed ID: 22551986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TREN (Tris(2-aminoethyl)amine): an effective scaffold for the assembly of triple helical collagen mimetic structures.
    Kwak J; De Capua A; Locardi E; Goodman M
    J Am Chem Soc; 2002 Nov; 124(47):14085-91. PubMed ID: 12440907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxinobactin and sulfoxinobactin, abiotic siderophore analogues to enterobactin involving 8-hydroxyquinoline subunits: thermodynamic and structural studies.
    du Moulinet d'Hardemare A; Gellon G; Philouze C; Serratrice G
    Inorg Chem; 2012 Nov; 51(22):12142-51. PubMed ID: 23134487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of electrostatics in siderophore recognition by the immunoprotein Siderocalin.
    Hoette TM; Abergel RJ; Xu J; Strong RK; Raymond KN
    J Am Chem Soc; 2008 Dec; 130(51):17584-92. PubMed ID: 19053425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fe(III) coordination properties of two new saccharide-based enterobactin analogues: methyl 2,3,4-tris-O-[N-[2,3-di(hydroxy)benzoyl-glycyl]-aminopropyl]-alpha-D-glucopyranoside and methyl 2,3,4-tris-O-[N-[2,3-di-(hydroxy)-benzoyl]-aminopropyl]-alpha-D-glucopyranoside.
    Dhungana S; Heggemann S; Heinisch L; Möllmann U; Boukhalfa H; Crumbliss AL
    Inorg Chem; 2001 Dec; 40(27):7079-86. PubMed ID: 11754294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release.
    Albrecht-Gary AM; Crumbliss AL
    Met Ions Biol Syst; 1998; 35():239-327. PubMed ID: 9444763
    [No Abstract]   [Full Text] [Related]  

  • 16. Iron(III)-templated macrolactonization of trihydroxamate siderophores.
    Wencewicz TA; Oliver AG; Miller MJ
    Org Lett; 2012 Sep; 14(17):4390-3. PubMed ID: 22906163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enterobactin protonation and iron release: structural characterization of the salicylate coordination shift in ferric enterobactin.
    Abergel RJ; Warner JA; Shuh DK; Raymond KN
    J Am Chem Soc; 2006 Jul; 128(27):8920-31. PubMed ID: 16819888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tripodal peptide hydroxamates as siderophore models. Iron(III) binding with ligands containing H-(alanyl)n-beta-(N-hydroxy)alanyl strands (n = 1-3) anchored by nitrilotriacetic acid.
    Hara Y; Shen L; Tsubouchi A; Akiyama M; Umemoto K
    Inorg Chem; 2000 Oct; 39(22):5074-82. PubMed ID: 11233204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A siderophore from a marine bacterium with an exceptional ferric ion affinity constant.
    Reid RT; Live DH; Faulkner DJ; Butler A
    Nature; 1993 Dec; 366(6454):455-8. PubMed ID: 8247152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferric stability constants of representative marine siderophores: marinobactins, aquachelins, and petrobactin.
    Zhang G; Amin SA; Küpper FC; Holt PD; Carrano CJ; Butler A
    Inorg Chem; 2009 Dec; 48(23):11466-73. PubMed ID: 19902959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.