These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
505 related articles for article (PubMed ID: 16813577)
1. Arabidopsis cpFtsY mutants exhibit pleiotropic defects including an inability to increase iron deficiency-inducible root Fe(III) chelate reductase activity. Durrett TP; Connolly EL; Rogers EE Plant J; 2006 Aug; 47(3):467-79. PubMed ID: 16813577 [TBL] [Abstract][Full Text] [Related]
2. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana. Chen YH; Wu XM; Ling HQ; Yang WC Cell Res; 2006 Oct; 16(10):830-40. PubMed ID: 17031393 [TBL] [Abstract][Full Text] [Related]
3. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses. Sivitz A; Grinvalds C; Barberon M; Curie C; Vert G Plant J; 2011 Jun; 66(6):1044-52. PubMed ID: 21426424 [TBL] [Abstract][Full Text] [Related]
4. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Yuan Y; Wu H; Wang N; Li J; Zhao W; Du J; Wang D; Ling HQ Cell Res; 2008 Mar; 18(3):385-97. PubMed ID: 18268542 [TBL] [Abstract][Full Text] [Related]
5. The FRO2 ferric reductase is required for glycine betaine's effect on chilling tolerance in Arabidopsis roots. Einset J; Winge P; Bones AM; Connolly EL Physiol Plant; 2008 Oct; 134(2):334-41. PubMed ID: 18513375 [TBL] [Abstract][Full Text] [Related]
6. A ferric-chelate reductase for iron uptake from soils. Robinson NJ; Procter CM; Connolly EL; Guerinot ML Nature; 1999 Feb; 397(6721):694-7. PubMed ID: 10067892 [TBL] [Abstract][Full Text] [Related]
7. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize. Ding H; Duan L; Wu H; Yang R; Ling H; Li WX; Zhang F Physiol Plant; 2009 Jul; 136(3):274-83. PubMed ID: 19453500 [TBL] [Abstract][Full Text] [Related]
8. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Vansuyt G; Robin A; Briat JF; Curie C; Lemanceau P Mol Plant Microbe Interact; 2007 Apr; 20(4):441-7. PubMed ID: 17427814 [TBL] [Abstract][Full Text] [Related]
9. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. Séguéla M; Briat JF; Vert G; Curie C Plant J; 2008 Jul; 55(2):289-300. PubMed ID: 18397377 [TBL] [Abstract][Full Text] [Related]
10. Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Mukherjee I; Campbell NH; Ash JS; Connolly EL Planta; 2006 May; 223(6):1178-90. PubMed ID: 16362328 [TBL] [Abstract][Full Text] [Related]
11. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Colangelo EP; Guerinot ML Plant Cell; 2004 Dec; 16(12):3400-12. PubMed ID: 15539473 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Connolly EL; Campbell NH; Grotz N; Prichard CL; Guerinot ML Plant Physiol; 2003 Nov; 133(3):1102-10. PubMed ID: 14526117 [TBL] [Abstract][Full Text] [Related]
13. An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response. Myouga F; Motohashi R; Kuromori T; Nagata N; Shinozaki K Plant J; 2006 Oct; 48(2):249-60. PubMed ID: 16995899 [TBL] [Abstract][Full Text] [Related]
14. Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana. Wu H; Li L; Du J; Yuan Y; Cheng X; Ling HQ Plant Cell Physiol; 2005 Sep; 46(9):1505-14. PubMed ID: 16006655 [TBL] [Abstract][Full Text] [Related]
15. Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots. Zaharieva TB; Abadía J Protoplasma; 2003 Jun; 221(3-4):269-75. PubMed ID: 12802634 [TBL] [Abstract][Full Text] [Related]
16. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. Jakoby M; Wang HY; Reidt W; Weisshaar B; Bauer P FEBS Lett; 2004 Nov; 577(3):528-34. PubMed ID: 15556641 [TBL] [Abstract][Full Text] [Related]
17. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Arrivault S; Senger T; Krämer U Plant J; 2006 Jun; 46(5):861-79. PubMed ID: 16709200 [TBL] [Abstract][Full Text] [Related]
18. A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Schaaf G; Schikora A; Häberle J; Vert G; Ludewig U; Briat JF; Curie C; von Wirén N Plant Cell Physiol; 2005 May; 46(5):762-74. PubMed ID: 15753101 [TBL] [Abstract][Full Text] [Related]
19. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. Vasconcelos M; Eckert H; Arahana V; Graef G; Grusak MA; Clemente T Planta; 2006 Oct; 224(5):1116-28. PubMed ID: 16741749 [TBL] [Abstract][Full Text] [Related]
20. Non-identical contributions of two membrane-bound cpSRP components, cpFtsY and Alb3, to thylakoid biogenesis. Asakura Y; Kikuchi S; Nakai M Plant J; 2008 Dec; 56(6):1007-17. PubMed ID: 18764927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]