BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 16813577)

  • 1. Arabidopsis cpFtsY mutants exhibit pleiotropic defects including an inability to increase iron deficiency-inducible root Fe(III) chelate reductase activity.
    Durrett TP; Connolly EL; Rogers EE
    Plant J; 2006 Aug; 47(3):467-79. PubMed ID: 16813577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana.
    Chen YH; Wu XM; Ling HQ; Yang WC
    Cell Res; 2006 Oct; 16(10):830-40. PubMed ID: 17031393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses.
    Sivitz A; Grinvalds C; Barberon M; Curie C; Vert G
    Plant J; 2011 Jun; 66(6):1044-52. PubMed ID: 21426424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis.
    Yuan Y; Wu H; Wang N; Li J; Zhao W; Du J; Wang D; Ling HQ
    Cell Res; 2008 Mar; 18(3):385-97. PubMed ID: 18268542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The FRO2 ferric reductase is required for glycine betaine's effect on chilling tolerance in Arabidopsis roots.
    Einset J; Winge P; Bones AM; Connolly EL
    Physiol Plant; 2008 Oct; 134(2):334-41. PubMed ID: 18513375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ferric-chelate reductase for iron uptake from soils.
    Robinson NJ; Procter CM; Connolly EL; Guerinot ML
    Nature; 1999 Feb; 397(6721):694-7. PubMed ID: 10067892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize.
    Ding H; Duan L; Wu H; Yang R; Ling H; Li WX; Zhang F
    Physiol Plant; 2009 Jul; 136(3):274-83. PubMed ID: 19453500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana.
    Vansuyt G; Robin A; Briat JF; Curie C; Lemanceau P
    Mol Plant Microbe Interact; 2007 Apr; 20(4):441-7. PubMed ID: 17427814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway.
    Séguéla M; Briat JF; Vert G; Curie C
    Plant J; 2008 Jul; 55(2):289-300. PubMed ID: 18397377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper.
    Mukherjee I; Campbell NH; Ash JS; Connolly EL
    Planta; 2006 May; 223(6):1178-90. PubMed ID: 16362328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response.
    Colangelo EP; Guerinot ML
    Plant Cell; 2004 Dec; 16(12):3400-12. PubMed ID: 15539473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control.
    Connolly EL; Campbell NH; Grotz N; Prichard CL; Guerinot ML
    Plant Physiol; 2003 Nov; 133(3):1102-10. PubMed ID: 14526117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response.
    Myouga F; Motohashi R; Kuromori T; Nagata N; Shinozaki K
    Plant J; 2006 Oct; 48(2):249-60. PubMed ID: 16995899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana.
    Wu H; Li L; Du J; Yuan Y; Cheng X; Ling HQ
    Plant Cell Physiol; 2005 Sep; 46(9):1505-14. PubMed ID: 16006655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots.
    Zaharieva TB; Abadía J
    Protoplasma; 2003 Jun; 221(3-4):269-75. PubMed ID: 12802634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana.
    Jakoby M; Wang HY; Reidt W; Weisshaar B; Bauer P
    FEBS Lett; 2004 Nov; 577(3):528-34. PubMed ID: 15556641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply.
    Arrivault S; Senger T; Krämer U
    Plant J; 2006 Jun; 46(5):861-79. PubMed ID: 16709200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis.
    Schaaf G; Schikora A; Häberle J; Vert G; Ludewig U; Briat JF; Curie C; von Wirén N
    Plant Cell Physiol; 2005 May; 46(5):762-74. PubMed ID: 15753101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.
    Vasconcelos M; Eckert H; Arahana V; Graef G; Grusak MA; Clemente T
    Planta; 2006 Oct; 224(5):1116-28. PubMed ID: 16741749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-identical contributions of two membrane-bound cpSRP components, cpFtsY and Alb3, to thylakoid biogenesis.
    Asakura Y; Kikuchi S; Nakai M
    Plant J; 2008 Dec; 56(6):1007-17. PubMed ID: 18764927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.