These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16814324)

  • 1. Modeling the mechanism of metabolic oscillations in ischemic cardiac myocytes.
    Saleet Jafri M; Kotulska M
    J Theor Biol; 2006 Oct; 242(4):801-17. PubMed ID: 16814324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of metabolic oscillations by mitoKATP and ATP synthase during simulated ischemia in ventricular myocytes.
    Ryu SY; Lee SH; Ho WK
    J Mol Cell Cardiol; 2005 Dec; 39(6):874-81. PubMed ID: 16242144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of cardiac energetics: role of redox state and cellular compartmentation during ischemia.
    Cabrera ME; Zhou L; Stanley WC; Saidel GM
    Ann N Y Acad Sci; 2005 Jun; 1047():259-70. PubMed ID: 16093502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial calcium signaling and energy metabolism.
    Nguyen MH; Jafri MS
    Ann N Y Acad Sci; 2005 Jun; 1047():127-37. PubMed ID: 16093491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycolytic oscillations in single ischemic cardiomyocytes at near anoxia.
    Ganitkevich V; Mattea V; Benndorf K
    J Gen Physiol; 2010 Apr; 135(4):307-19. PubMed ID: 20231372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction by SEA0400 of myocardial ischemia-induced cytoplasmic and mitochondrial Ca2+ overload.
    Namekata I; Shimada H; Kawanishi T; Tanaka H; Shigenobu K
    Eur J Pharmacol; 2006 Aug; 543(1-3):108-15. PubMed ID: 16842776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.
    Yaniv Y; Stanley WC; Saidel GM; Cabrera ME; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():69-78. PubMed ID: 18375579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for regulation of mitochondrial function by the L-type Ca2+ channel in ventricular myocytes.
    Viola HM; Arthur PG; Hool LC
    J Mol Cell Cardiol; 2009 Jun; 46(6):1016-26. PubMed ID: 19166857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation.
    Brennan JP; Southworth R; Medina RA; Davidson SM; Duchen MR; Shattock MJ
    Cardiovasc Res; 2006 Nov; 72(2):313-21. PubMed ID: 16950237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic control analysis of integrated energy metabolism in permeabilized cardiomyocytes - experimental study.
    Tepp K; Timohhina N; Chekulayev V; Shevchuk I; Kaambre T; Saks V
    Acta Biochim Pol; 2010; 57(4):421-30. PubMed ID: 21170421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell.
    Diederichs F
    Bull Math Biol; 2006 Oct; 68(7):1779-818. PubMed ID: 16832733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of cellular compartmentation in the metabolic response to stress: mechanistic insights from computational models.
    Zhou L; Yu X; Cabrera ME; Stanley WC
    Ann N Y Acad Sci; 2006 Oct; 1080():120-39. PubMed ID: 17132780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical model of mitochondrial ionic homeostasis: three modes of Ca2+ transport.
    Pokhilko AV; Ataullakhanov FI; Holmuhamedov EL
    J Theor Biol; 2006 Nov; 243(1):152-69. PubMed ID: 16859713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct toxic effects of aqueous extract of cigarette smoke on cardiac myocytes at clinically relevant concentrations.
    Yamada S; Zhang XQ; Kadono T; Matsuoka N; Rollins D; Badger T; Rodesch CK; Barry WH
    Toxicol Appl Pharmacol; 2009 Apr; 236(1):71-7. PubMed ID: 19371621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes.
    Ruiz-Meana M; Abellán A; Miró-Casas E; Garcia-Dorado D
    Basic Res Cardiol; 2007 Nov; 102(6):542-52. PubMed ID: 17891523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simulation study on the constancy of cardiac energy metabolites during workload transition.
    Saito R; Takeuchi A; Himeno Y; Inagaki N; Matsuoka S
    J Physiol; 2016 Dec; 594(23):6929-6945. PubMed ID: 27530892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Ca2+ uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion.
    Ruiz-Meana M; Garcia-Dorado D; Miró-Casas E; Abellán A; Soler-Soler J
    Cardiovasc Res; 2006 Sep; 71(4):715-24. PubMed ID: 16860295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale and modular analysis of cardiac energy metabolism: repairing the broken interfaces of isolated system components.
    Van Beek JH
    Ann N Y Acad Sci; 2008 Mar; 1123():155-68. PubMed ID: 18375588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-line measurements of oscillating mitochondrial membrane potential in glucose-fermenting Saccharomyces cerevisiae.
    Andersen AZ; Poulsen AK; Brasen JC; Olsen LF
    Yeast; 2007 Sep; 24(9):731-9. PubMed ID: 17568453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial adaptations within chronically ischemic swine myocardium.
    McFalls EO; Sluiter W; Schoonderwoerd K; Manintveld OC; Lamers JM; Bezstarosti K; van Beusekom HM; Sikora J; Ward HB; Merkus D; Duncker DJ
    J Mol Cell Cardiol; 2006 Dec; 41(6):980-8. PubMed ID: 16926020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.