BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16814324)

  • 1. Modeling the mechanism of metabolic oscillations in ischemic cardiac myocytes.
    Saleet Jafri M; Kotulska M
    J Theor Biol; 2006 Oct; 242(4):801-17. PubMed ID: 16814324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of metabolic oscillations by mitoKATP and ATP synthase during simulated ischemia in ventricular myocytes.
    Ryu SY; Lee SH; Ho WK
    J Mol Cell Cardiol; 2005 Dec; 39(6):874-81. PubMed ID: 16242144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of cardiac energetics: role of redox state and cellular compartmentation during ischemia.
    Cabrera ME; Zhou L; Stanley WC; Saidel GM
    Ann N Y Acad Sci; 2005 Jun; 1047():259-70. PubMed ID: 16093502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial calcium signaling and energy metabolism.
    Nguyen MH; Jafri MS
    Ann N Y Acad Sci; 2005 Jun; 1047():127-37. PubMed ID: 16093491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycolytic oscillations in single ischemic cardiomyocytes at near anoxia.
    Ganitkevich V; Mattea V; Benndorf K
    J Gen Physiol; 2010 Apr; 135(4):307-19. PubMed ID: 20231372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction by SEA0400 of myocardial ischemia-induced cytoplasmic and mitochondrial Ca2+ overload.
    Namekata I; Shimada H; Kawanishi T; Tanaka H; Shigenobu K
    Eur J Pharmacol; 2006 Aug; 543(1-3):108-15. PubMed ID: 16842776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.
    Yaniv Y; Stanley WC; Saidel GM; Cabrera ME; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():69-78. PubMed ID: 18375579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for regulation of mitochondrial function by the L-type Ca2+ channel in ventricular myocytes.
    Viola HM; Arthur PG; Hool LC
    J Mol Cell Cardiol; 2009 Jun; 46(6):1016-26. PubMed ID: 19166857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation.
    Brennan JP; Southworth R; Medina RA; Davidson SM; Duchen MR; Shattock MJ
    Cardiovasc Res; 2006 Nov; 72(2):313-21. PubMed ID: 16950237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic control analysis of integrated energy metabolism in permeabilized cardiomyocytes - experimental study.
    Tepp K; Timohhina N; Chekulayev V; Shevchuk I; Kaambre T; Saks V
    Acta Biochim Pol; 2010; 57(4):421-30. PubMed ID: 21170421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell.
    Diederichs F
    Bull Math Biol; 2006 Oct; 68(7):1779-818. PubMed ID: 16832733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of cellular compartmentation in the metabolic response to stress: mechanistic insights from computational models.
    Zhou L; Yu X; Cabrera ME; Stanley WC
    Ann N Y Acad Sci; 2006 Oct; 1080():120-39. PubMed ID: 17132780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical model of mitochondrial ionic homeostasis: three modes of Ca2+ transport.
    Pokhilko AV; Ataullakhanov FI; Holmuhamedov EL
    J Theor Biol; 2006 Nov; 243(1):152-69. PubMed ID: 16859713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct toxic effects of aqueous extract of cigarette smoke on cardiac myocytes at clinically relevant concentrations.
    Yamada S; Zhang XQ; Kadono T; Matsuoka N; Rollins D; Badger T; Rodesch CK; Barry WH
    Toxicol Appl Pharmacol; 2009 Apr; 236(1):71-7. PubMed ID: 19371621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes.
    Ruiz-Meana M; Abellán A; Miró-Casas E; Garcia-Dorado D
    Basic Res Cardiol; 2007 Nov; 102(6):542-52. PubMed ID: 17891523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simulation study on the constancy of cardiac energy metabolites during workload transition.
    Saito R; Takeuchi A; Himeno Y; Inagaki N; Matsuoka S
    J Physiol; 2016 Dec; 594(23):6929-6945. PubMed ID: 27530892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Ca2+ uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion.
    Ruiz-Meana M; Garcia-Dorado D; Miró-Casas E; Abellán A; Soler-Soler J
    Cardiovasc Res; 2006 Sep; 71(4):715-24. PubMed ID: 16860295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale and modular analysis of cardiac energy metabolism: repairing the broken interfaces of isolated system components.
    Van Beek JH
    Ann N Y Acad Sci; 2008 Mar; 1123():155-68. PubMed ID: 18375588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-line measurements of oscillating mitochondrial membrane potential in glucose-fermenting Saccharomyces cerevisiae.
    Andersen AZ; Poulsen AK; Brasen JC; Olsen LF
    Yeast; 2007 Sep; 24(9):731-9. PubMed ID: 17568453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial adaptations within chronically ischemic swine myocardium.
    McFalls EO; Sluiter W; Schoonderwoerd K; Manintveld OC; Lamers JM; Bezstarosti K; van Beusekom HM; Sikora J; Ward HB; Merkus D; Duncker DJ
    J Mol Cell Cardiol; 2006 Dec; 41(6):980-8. PubMed ID: 16926020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.