These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16814349)

  • 1. Porosity estimation of aged mortar using a micromechanical model.
    Hernández MG; Anaya JJ; Sanchez T; Segura I
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1007-11. PubMed ID: 16814349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of micromechanics to the characterization of mortar by ultrasound.
    Hernández MG; Anaya JJ; Izquierdo MA; Ullate LG
    Ultrasonics; 2002 May; 40(1-8):217-21. PubMed ID: 12159935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sand/cement ratio evaluation on mortar using neural networks and ultrasonic transmission inspection.
    Molero M; Segura I; Izquierdo MA; Fuente JV; Anaya JJ
    Ultrasonics; 2009 Feb; 49(2):231-7. PubMed ID: 18840386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the fluid in the inclusions of cement paste on the ultrasonic velocity.
    Hernández MG; Anaya JJ; Ullate LG; Ibañez A
    Ultrasonics; 2004 Apr; 42(1-9):865-9. PubMed ID: 15047398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaky Rayleigh wave investigation on mortar samples.
    Neuenschwander J; Schmidt T; Lüthi T; Romer M
    Ultrasonics; 2006 Dec; 45(1-4):50-5. PubMed ID: 16876218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porosity estimation of concrete by ultrasonic NDE.
    Hernandez MG; Izquierdo MA; Ibanez A; Anaya JJ; Ullate LG
    Ultrasonics; 2000 Mar; 38(1-8):531-3. PubMed ID: 10829720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of coherent surface wave dispersion and attenuation for non-destructive testing of concrete.
    Chekroun M; Le Marrec L; Abraham O; Durand O; Villain G
    Ultrasonics; 2009 Dec; 49(8):743-51. PubMed ID: 19545883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings.
    Hobbs B; Tchoketch Kebir M
    Forensic Sci Int; 2007 Apr; 167(2-3):167-72. PubMed ID: 16904854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and hardening of concrete with ultrasonic testing.
    del Río LM; Jiménez A; López F; Rosa FJ; Rufo MM; Paniagua JM
    Ultrasonics; 2004 Apr; 42(1-9):527-30. PubMed ID: 15047341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks.
    Trtnik G; Kavcic F; Turk G
    Ultrasonics; 2009 Jan; 49(1):53-60. PubMed ID: 18589471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-continuous ultrasonic sounding and changes of ultrasonic signal characteristics as a sensitive tool for the evaluation of ongoing microstructural changes of experimental mortar bars tested for their ASR potential.
    Lokajíček T; Kuchařová A; Petružálek M; Šachlová Š; Svitek T; Přikryl R
    Ultrasonics; 2016 Sep; 71():40-50. PubMed ID: 27268163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic characterization of granites obtained from industrial quarries of Extremadura (Spain).
    del Río LM; López F; Esteban FJ; Tejado JJ; Mota M; González I; San Emeterio JL; Ramos A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1057-61. PubMed ID: 16814343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Rayleigh waves into mortar and concrete samples.
    Piwakowski B; Fnine A; Goueygou M; Buyle-Bodin F
    Ultrasonics; 2004 Apr; 42(1-9):395-402. PubMed ID: 15047318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.
    Bogas JA; Gomes MG; Gomes A
    Ultrasonics; 2013 Jul; 53(5):962-72. PubMed ID: 23351273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of ultrasonic data of signals backscattered by mortar using the principal component analysis.
    Lotfi H; Izbaim D; Bita H; Mesbah H; Banouni H
    Data Brief; 2021 Feb; 34():106741. PubMed ID: 33521181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvements of nano-SiO2 on sludge/fly ash mortar.
    Lin DF; Lin KL; Chang WC; Luo HL; Cai MQ
    Waste Manag; 2008; 28(6):1081-7. PubMed ID: 17512717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of carbonation and leaching on porosity in cement-bound waste.
    Van Gerven T; Cornelis G; Vandoren E; Vandecasteele C
    Waste Manag; 2007; 27(7):977-85. PubMed ID: 16843650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating the Effect of Accelerated Carbonation on Porosity and Mechanical Properties of Hydrated Portland Cement Paste Using X-Ray Tomography and Advanced Micromechanical Testing.
    Zhang H; Rodriguez CR; Dong H; Gan Y; Schlangen E; Šavija B
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32365725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Ultrasonic Pulse Velocity for Cement, Mortar, and Concrete through a Multiscale Homogenization Approach.
    Jiang J; Zhang D; Gong F; Zhi D
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical characterization of pharmaceutical solids: a comparison between rheological tests performed under static and dynamic porosity conditions.
    Bonacucina G; Cespi M; Misici-Falzi M; Palmieri GF
    Eur J Pharm Biopharm; 2007 Aug; 67(1):277-83. PubMed ID: 17276665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.