BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 16814359)

  • 1. Visualization of active biomass distribution in a BGAC fluidized bed reactor using GFP tagged Pseudomonas putida F1.
    Herzberg M; Dosoretz CG; Kuhn J; Klein S; Green M
    Water Res; 2006 Aug; 40(14):2704-12. PubMed ID: 16814359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological granulated activated carbon fluidized bed reactor for atrazine remediation.
    Herzberg M; Dosoretz CG; Tarre S; Beliavski M; Green M
    Water Sci Technol; 2004; 49(11-12):215-22. PubMed ID: 15303744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compatibility of the green fluorescent protein and a general nucleic acid stain for quantitative description of a Pseudomonas putida biofilm.
    Nancharaiah YV; Venugopalan VP; Wuertz S; Wilderer PA; Hausner M
    J Microbiol Methods; 2005 Feb; 60(2):179-87. PubMed ID: 15590092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of operational conditions on biofilm specific activity of an anaerobic fluidized bed reactor.
    García-Morales JL; Romero LI; Sales D
    Water Sci Technol; 2003; 47(5):197-200. PubMed ID: 12701928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of rpoS on the survival of a p-nitrophenol degrading Pseudomonas putida strain in planktonic and biofilm phases.
    Maki ML; Lawrence JR; Swerhone GD; Leung KT
    Can J Microbiol; 2009 Oct; 55(10):1176-86. PubMed ID: 19935890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of biomass detachment rate coefficients in anaerobic fluidized-bed-GAC reactors.
    Nakhla G; Suidan MT
    Biotechnol Bioeng; 2002 Dec; 80(6):660-9. PubMed ID: 12378607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An airlift biofilm reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1.
    Viggiani A; Olivieri G; Siani L; Di Donato A; Marzocchella A; Salatino P; Barbieri P; Galli E
    J Biotechnol; 2006 Jun; 123(4):464-77. PubMed ID: 16490274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patchy biofilm coverage can explain the potential advantage of BGAC reactors.
    Herzberg M; Dosoretz CG; Tarre S; Green M
    Environ Sci Technol; 2003 Sep; 37(18):4274-80. PubMed ID: 14524464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment.
    Magic-Knezev A; van der Kooij D
    Water Res; 2004 Nov; 38(18):3971-9. PubMed ID: 15380987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm reactors: an experimental and modeling study of wastewater denitrification in fluidized-bed reactors of activated carbon particles.
    Coelhoso I; Boaventura R; Rodrigues A
    Biotechnol Bioeng; 1992 Aug; 40(5):625-33. PubMed ID: 18601159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition between planktonic and fixed microorganisms during the start-up of methanogenic biofilm reactors.
    Cresson R; Escudié R; Steyer JP; Delgenès JP; Bernet N
    Water Res; 2008 Feb; 42(3):792-800. PubMed ID: 17825351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR).
    Mohan SV; Rao NC; Sarma PN
    J Hazard Mater; 2007 Jun; 144(1-2):108-17. PubMed ID: 17097228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced start-up of anaerobic attached film expanded bed reactor by pre-aeration of biofilm carrier.
    Ye FX; Chen YX; Feng XS
    Bioresour Technol; 2005 Jan; 96(1):115-9. PubMed ID: 15364089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors.
    Tijhuis L; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1994 Aug; 44(5):595-608. PubMed ID: 18618795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioaugmentation of microbial communities in laboratory and pilot scale sequencing batch biofilm reactors using the TOL plasmid.
    Venkata Mohan S; Falkentoft C; Venkata Nancharaiah Y; Sturm BS; Wattiau P; Wilderer PA; Wuertz S; Hausner M
    Bioresour Technol; 2009 Mar; 100(5):1746-53. PubMed ID: 19010662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic digestion of olive mill wastewaters in biofilm reactors packed with granular activated carbon and "Manville" silica beads.
    Bertin L; Berselli S; Fava F; Petrangeli-Papini M; Marchetti L
    Water Res; 2004; 38(14-15):3167-78. PubMed ID: 15276732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination.
    Velten S; Hammes F; Boller M; Egli T
    Water Res; 2007 May; 41(9):1973-83. PubMed ID: 17343893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Kinetic Studies and Performance Evaluation of Biofilm and Biomass Characteristics of Pseudomonas fluorescens in Degrading Synthetic Phenolic Effluent in Inverse Fluidized Bed Biofilm Reactor.
    Begum SS; Radha KV
    Water Environ Res; 2016 May; 88(5):415-24. PubMed ID: 27131305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofilm and biomass characteristics in high-performance fluidized-bed biofilm reactors.
    Rabah FK; Dahab MF
    Water Res; 2004 Nov; 38(19):4262-70. PubMed ID: 15491672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomass concentration and biofilm characteristics in high-performance fluidized-bed biofilm reactors.
    Rabah FK; Dahab MF; Surampalli RY
    Water Sci Technol; 2005; 52(10-11):579-86. PubMed ID: 16459836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.