These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 16814385)

  • 1. Trace metal bioaccumulation: models, metabolic availability and toxicity.
    Rainbow PS
    Environ Int; 2007 May; 33(4):576-82. PubMed ID: 16814385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aquatic insects and trace metals: bioavailability, bioaccumulation, and toxicity.
    Hare L
    Crit Rev Toxicol; 1992; 22(5-6):327-69. PubMed ID: 1489510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kenneth Mellanby Review Award. Trace metal concentrations in aquatic invertebrates: why and so what?
    Rainbow PS
    Environ Pollut; 2002; 120(3):497-507. PubMed ID: 12442773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal toxicity, uptake and bioaccumulation in aquatic invertebrates--modelling zinc in crustaceans.
    Rainbow PS; Luoma SN
    Aquat Toxicol; 2011 Oct; 105(3-4):455-65. PubMed ID: 21872557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative approaches to understand metal bioaccumulation in aquatic animals.
    Wang WX; Rainbow PS
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):315-23. PubMed ID: 18502695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of dynamic mobilization of trace metals in sediments using DGT and comparison with bioaccumulation in Chironomus riparius: first results of an experimental study.
    Roulier JL; Tusseau-Vuillemin MH; Coquery M; Geffard O; Garric J
    Chemosphere; 2008 Jan; 70(5):925-32. PubMed ID: 17888490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of metal exposure history on trace metal uptake and accumulation by marine invertebrates.
    Wang WX; Rainbow PS
    Ecotoxicol Environ Saf; 2005 Jun; 61(2):145-59. PubMed ID: 15883088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake.
    Worms I; Simon DF; Hassler CS; Wilkinson KJ
    Biochimie; 2006 Nov; 88(11):1721-31. PubMed ID: 17049417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration.
    DeForest DK; Brix KV; Adams WJ
    Aquat Toxicol; 2007 Aug; 84(2):236-46. PubMed ID: 17673306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utility of tissue residues for predicting effects of metals on aquatic organisms.
    Adams WJ; Blust R; Borgmann U; Brix KV; DeForest DK; Green AS; Meyer JS; McGeer JC; Paquin PR; Rainbow PS; Wood CM
    Integr Environ Assess Manag; 2011 Jan; 7(1):75-98. PubMed ID: 21184570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting metal toxicity in sediments: a critique of current approaches.
    Simpson SL; Batley GE
    Integr Environ Assess Manag; 2007 Jan; 3(1):18-31. PubMed ID: 17283593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of dynamic models in predicting the bioaccumulation, transport and toxicity of trace metals in aquatic organisms.
    Wang WX; Tan QG
    Environ Pollut; 2019 Sep; 252(Pt B):1561-1573. PubMed ID: 31277025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Warming and drought change trace element bioaccumulation patterns in a Mediterranean shrubland.
    Sardans J; Peñuelas J; Estiarte M
    Chemosphere; 2008 Jan; 70(5):874-85. PubMed ID: 17709128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological metal uptake by Nostoc punctiforme.
    Hudek L; Rai S; Michalczyk A; Rai LC; Neilan BA; Ackland ML
    Biometals; 2012 Oct; 25(5):893-903. PubMed ID: 22592442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways of trace metal uptake in the lugworm Arenicola marina.
    Casado-Martinez MC; Smith BD; Delvalls TA; Rainbow PS
    Aquat Toxicol; 2009 Apr; 92(1):9-17. PubMed ID: 19181398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue residue approach for chemical mixtures.
    Dyer S; St J Warne M; Meyer JS; Leslie HA; Escher BI
    Integr Environ Assess Manag; 2011 Jan; 7(1):99-115. PubMed ID: 21184571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity of proton-metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability.
    Stockdale A; Tipping E; Lofts S; Ormerod SJ; Clements WH; Blust R
    Aquat Toxicol; 2010 Oct; 100(1):112-9. PubMed ID: 20701986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trace metal bioaccumulation in eight common coastal Australian polychaeta.
    Waring JS; Maher WA; Krikowa F
    J Environ Monit; 2006 Nov; 8(11):1149-57. PubMed ID: 17075622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers.
    Amiard JC; Amiard-Triquet C; Barka S; Pellerin J; Rainbow PS
    Aquat Toxicol; 2006 Feb; 76(2):160-202. PubMed ID: 16289342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trophic influences of metal accumulation in natural pollution laboratories at deep-sea hydrothermal vents of the Mid-Atlantic Ridge.
    Kádár E; Costa V; Segonzac M
    Sci Total Environ; 2007 Feb; 373(2-3):464-72. PubMed ID: 17229454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.