These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 16814453)
1. Locating Escherichia coli contamination in a rural South Carolina watershed. Kloot RW J Environ Manage; 2007 Jun; 83(4):402-8. PubMed ID: 16814453 [TBL] [Abstract][Full Text] [Related]
2. Identifying fecal sources in a selected catchment reach using multiple source-tracking tools. Vogel JR; Stoeckel DM; Lamendella R; Zelt RB; Santo Domingo JW; Walker SR; Oerther DB J Environ Qual; 2007; 36(3):718-29. PubMed ID: 17412907 [TBL] [Abstract][Full Text] [Related]
3. Semi-quantitative evaluation of fecal contamination potential by human and ruminant sources using multiple lines of evidence. Stoeckel DM; Stelzer EA; Stogner RW; Mau DP Water Res; 2011 May; 45(10):3225-44. PubMed ID: 21513966 [TBL] [Abstract][Full Text] [Related]
4. Use of in-stream reservoirs to reduce bacterial contamination of rural watersheds. Gannon VP; Duke GD; Thomas JE; Vanleeuwen J; Byrne J; Johnson D; Kienzle SW; Little J; Graham T; Selinger B Sci Total Environ; 2005 Sep; 348(1-3):19-31. PubMed ID: 16162311 [TBL] [Abstract][Full Text] [Related]
5. Respective contributions of point and non-point sources of E. coli and enterococci in a large urbanized watershed (the Seine river, France). Garcia-Armisen T; Servais P J Environ Manage; 2007 Mar; 82(4):512-8. PubMed ID: 16725253 [TBL] [Abstract][Full Text] [Related]
6. Microbial source tracking in a rural watershed dominated by cattle. Graves AK; Hagedorn C; Brooks A; Hagedorn RL; Martin E Water Res; 2007 Aug; 41(16):3729-39. PubMed ID: 17582454 [TBL] [Abstract][Full Text] [Related]
7. Diurnal variability in concentrations and sources of Escherichia coli in three streams. Meays CL; Broersma K; Nordin R; Mazumder A; Samadpour M Can J Microbiol; 2006 Nov; 52(11):1130-5. PubMed ID: 17215905 [TBL] [Abstract][Full Text] [Related]
8. Escherichia coli loading at or near base flow in a mixed-use watershed. Gentry RW; McCarthy J; Layton A; McKay LD; Williams D; Koirala SR; Sayler GS J Environ Qual; 2006; 35(6):2244-9. PubMed ID: 17071895 [TBL] [Abstract][Full Text] [Related]
9. Spatial and temporal variations of water quality in Cao-E River of eastern China. Chen DJ; Lu J; Yuan SF; Jin SQ; Shen YN J Environ Sci (China); 2006; 18(4):680-8. PubMed ID: 17078546 [TBL] [Abstract][Full Text] [Related]
10. A long-term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four US receiving waters: characteristics of the study streams, sample sites, mills, and mill effluents. Hall TJ; Ragsdale RL; Arthurs WJ; Ikoma J; Borton DL; Cook DL Integr Environ Assess Manag; 2009 Apr; 5(2):199-218. PubMed ID: 19063588 [TBL] [Abstract][Full Text] [Related]
11. Determining the source of fecal contamination in recreational waters. Meyer KJ; Appletoft CM; Schwemm AK; Uzoigwe JC; Brown EJ J Environ Health; 2005; 68(1):25-30. PubMed ID: 16121484 [TBL] [Abstract][Full Text] [Related]
12. Assessment of the microbial quality of irrigation water in a prairie watershed. Fremaux B; Boa T; Chaykowski A; Kasichayanula S; Gritzfeld J; Braul L; Yost C J Appl Microbiol; 2009 Feb; 106(2):442-54. PubMed ID: 19054231 [TBL] [Abstract][Full Text] [Related]
13. Spatial variation of waterborne Escherichia coli - implications for routine water quality monitoring. Quilliam RS; Clements K; Duce C; Cottrill SB; Malham SK; Jones DL J Water Health; 2011 Dec; 9(4):734-7. PubMed ID: 22048432 [TBL] [Abstract][Full Text] [Related]
14. Source tracking of microbial intrusion in water systems using artificial neural networks. Kim M; Choi CY; Gerba CP Water Res; 2008 Feb; 42(4-5):1308-14. PubMed ID: 17988708 [TBL] [Abstract][Full Text] [Related]
15. Experience with the antibiotic resistance analysis and DNA fingerprinting in tracking faecal pollution at two lake beaches. Edge TA; Hill S; Stinson G; Seto P; Marsalek J Water Sci Technol; 2007; 56(11):51-8. PubMed ID: 18057641 [TBL] [Abstract][Full Text] [Related]
16. Microbial water quality and influences of fecal accumulation from a dog exercise area. Garfield L; Walker M J Environ Health; 2008 Nov; 71(4):24-9. PubMed ID: 19004392 [TBL] [Abstract][Full Text] [Related]
17. Wildlife identified as major source of Escherichia coli in agriculturally dominated watersheds by BOX A1R-derived genetic fingerprints. Somarelli JA; Makarewicz JC; Sia R; Simon R J Environ Manage; 2007 Jan; 82(1):60-5. PubMed ID: 16551490 [TBL] [Abstract][Full Text] [Related]
18. Microbiological water quality along the Danube River: integrating data from two whole-river surveys and a transnational monitoring network. Kirschner AK; Kavka GG; Velimirov B; Mach RL; Sommer R; Farnleitner AH Water Res; 2009 Aug; 43(15):3673-84. PubMed ID: 19552934 [TBL] [Abstract][Full Text] [Related]
19. Identification of the sources of Escherichia coli in a watershed using carbon-utilization patterns and composite data sets. Moussa SH; Massengale RD J Water Health; 2008 Jun; 6(2):197-207. PubMed ID: 18209282 [TBL] [Abstract][Full Text] [Related]
20. Sunlight, season, snowmelt, storm, and source affect E. coli populations in an artificially ponded stream. Whitman RL; Przybyla-Kelly K; Shively DA; Nevers MB; Byappanahalli MN Sci Total Environ; 2008 Feb; 390(2-3):448-55. PubMed ID: 18031792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]