BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 16814837)

  • 1. Piezoelectric diaphragm for vibration energy harvesting.
    Minazara E; Vasic D; Costa F; Poulin G
    Ultrasonics; 2006 Dec; 44 Suppl 1():e699-703. PubMed ID: 16814837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibration energy harvesting using a piezoelectric circular diaphragm array.
    Wang W; Yang T; Chen X; Yao X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Sep; 59(9):2022-6. PubMed ID: 23007776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic energy harvesting using an electromechanical Helmholtz resonator.
    Liu F; Phipps A; Horowitz S; Ngo K; Cattafesta L; Nishida T; Sheplak M
    J Acoust Soc Am; 2008 Apr; 123(4):1983-90. PubMed ID: 18397006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method.
    Zhu M; Worthington E; Njuguna J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1309-18. PubMed ID: 19574142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction.
    Lallart M; Garbuio L; Petit L; Richard C; Guyomar D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2119-30. PubMed ID: 18986861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design study of piezoelectric energy-harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method.
    Zhu M; Worthington E; Tiwari A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):427-37. PubMed ID: 20178909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-cost capacitor voltage inverter for outstanding performance in piezoelectric energy harvesting.
    Lallart M; Garbuio L; Richard C; Guyomar D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):281-91. PubMed ID: 20178894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery.
    Hu Y; Xue H; Hu T; Hu H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):148-60. PubMed ID: 18334321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wideband energy harvesting for piezoelectric devices with linear resonant behavior.
    Luo C; Hofmann HF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1294-301. PubMed ID: 21768014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting.
    Ben Ammar M; Sahnoun S; Fakhfakh A; Viehweger C; Kanoun O
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the Matching Circuit on the Electromechanical Characteristics of Sandwiched Piezoelectric Transducers.
    Lin S; Xu J
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28208583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piezoelectric energy harvesting based on shear mode 0.71Pb(Mg(1/3)Nb(2/3))O3-0.29PbTiO3 single crystals.
    Ren B; Or SW; Wang F; Zhao X; Luo H; Li X; Zhang Q; Di W; Zhang Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1419-25. PubMed ID: 20529716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal design of resonant piezoelectric buzzer from a perspective of vibration-absorber theory.
    Bai MR; Chen RL; Chuang CY; Yu CS; Hsieh HL
    J Acoust Soc Am; 2007 Sep; 122(3):1568. PubMed ID: 17927415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A system of two piezoelectric transducers and a storage circuit for wireless energy transmission through a thin metal wall.
    Hu H; Hu Y; Chen C; Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2312-9. PubMed ID: 18986879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Self-Powered Hybrid SSHI Circuit with a Wide Operation Range for Piezoelectric Energy Harvesting.
    Wu L; Zhu P; Xie M
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single crystals and nonlinear process for outstanding vibration-powered electrical generators.
    Badel A; Benayad A; Lefeuvre E; Lebrun L; Richard C; Guyomar D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):673-84. PubMed ID: 16615571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-machined piezoelectric cantilevers for mechanical energy harvesting.
    Kim H; Bedekar V; Islam RA; Lee WH; Leo D; Priya S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):1900-5. PubMed ID: 18986886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.
    Lee S; Youn BD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):629-45. PubMed ID: 21429855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibration energy harvesting based on integrated piezoelectric components operating in different modes.
    Hu J; Jong J; Zhao C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):386-94. PubMed ID: 20178904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting.
    Li X; Guo M; Dong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):698-703. PubMed ID: 21507747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.