BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 16815241)

  • 1. Reciprocal inhibition of Cd(2+) and Ca(2+) uptake in human intestinal crypt cells for voltage-independent Zn-activated pathways.
    Bergeron PM; Jumarie C
    Biochim Biophys Acta; 2006 Jun; 1758(6):702-12. PubMed ID: 16815241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of cadmium uptake in human intestinal crypt cells HIEC in relation to inorganic metal speciation.
    Bergeron PM; Jumarie C
    Toxicology; 2006 Feb; 219(1-3):156-66. PubMed ID: 16361035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reciprocal inhibition of Cd and Ca uptake in isolated head kidney cells of rainbow trout (Oncorhynchus mykiss).
    Gagnon E; Hontela A; Jumarie C
    Toxicol In Vitro; 2007 Sep; 21(6):1077-86. PubMed ID: 17540537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro characterization of cadmium and zinc uptake via the gastro-intestinal tract of the rainbow trout (Oncorhynchus mykiss): Interactive effects and the influence of calcium.
    Ojo AA; Wood CM
    Aquat Toxicol; 2008 Aug; 89(1):55-64. PubMed ID: 18619683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of cadmium uptake and cytotoxicity in human osteoblast-like MG-63 cells.
    Lévesque M; Martineau C; Jumarie C; Moreau R
    Toxicol Appl Pharmacol; 2008 Sep; 231(3):308-17. PubMed ID: 18538363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxicity of cadmium and characteristics of its transport in cardiomyocytes.
    Limaye DA; Shaikh ZA
    Toxicol Appl Pharmacol; 1999 Jan; 154(1):59-66. PubMed ID: 9882592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.
    Zhao FJ; Hamon RE; Lombi E; McLaughlin MJ; McGrath SP
    J Exp Bot; 2002 Mar; 53(368):535-43. PubMed ID: 11847252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabotropic receptor-activated calcium increases and store-operated calcium influx in mouse Müller cells.
    Da Silva N; Herron CE; Stevens K; Jollimore CA; Barnes S; Kelly ME
    Invest Ophthalmol Vis Sci; 2008 Jul; 49(7):3065-73. PubMed ID: 18316702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acquired cadmium resistance in metallothionein-I/II(-/-) knockout cells: role of the T-type calcium channel Cacnalpha1G in cadmium uptake.
    Leslie EM; Liu J; Klaassen CD; Waalkes MP
    Mol Pharmacol; 2006 Feb; 69(2):629-39. PubMed ID: 16282520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cd²⁺ block and permeation of CaV3.1 (α1G) T-type calcium channels: candidate mechanism for Cd²⁺ influx.
    Lopin KV; Thévenod F; Page JC; Jones SW
    Mol Pharmacol; 2012 Dec; 82(6):1183-93. PubMed ID: 22973059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium uptake in aquatic insects: influences of phylogeny and metals (Cd and Zn).
    Poteat MD; Buchwalter DB
    J Exp Biol; 2014 Apr; 217(Pt 7):1180-6. PubMed ID: 24311815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium uptake by kidney distal convoluted tubule cells.
    Friedman PA; Gesek FA
    Toxicol Appl Pharmacol; 1994 Oct; 128(2):257-63. PubMed ID: 7524195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biokinetics of cadmium and zinc in a marine bacterium: influences of metal interaction and pre-exposure.
    Chen D; Qian PY; Wang WX
    Environ Toxicol Chem; 2008 Aug; 27(8):1794-801. PubMed ID: 18384227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal cations permeate the TRPV6 epithelial cation channel.
    Kovacs G; Danko T; Bergeron MJ; Balazs B; Suzuki Y; Zsembery A; Hediger MA
    Cell Calcium; 2011 Jan; 49(1):43-55. PubMed ID: 21146870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of basolateral-to-apical transepithelial transport of cadmium in intestinal TC7 cell monolayers.
    Carrière P; Mantha M; Champagne-Paradis S; Jumarie C
    Biometals; 2011 Oct; 24(5):857-74. PubMed ID: 21424617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caco-2 cell line used as an in vitro model to study cadmium accumulation in intestinal epithelial cells.
    Jumarie C; Campbell PG; Berteloot A; Houde M; Denizeau F
    J Membr Biol; 1997 Jul; 158(1):31-48. PubMed ID: 9211719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute study of interaction among cadmium, calcium, and zinc transport along the rat nephron in vivo.
    Barbier O; Jacquillet G; Tauc M; Poujeol P; Cougnon M
    Am J Physiol Renal Physiol; 2004 Nov; 287(5):F1067-75. PubMed ID: 15280159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between metals in rat jejunum: implications on the nature of cadmium uptake.
    Foulkes EC
    Toxicology; 1985 Oct; 37(1-2):117-25. PubMed ID: 4060163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium, zinc and the uptake of calcium by two crabs, Carcinus maenas and Eriocheir sinensis.
    Rainbow PS; Black WH
    Aquat Toxicol; 2005 Mar; 72(1-2):45-65. PubMed ID: 15748747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intricate interaction between store-operated calcium entry and calcium-activated chloride channels in pulmonary artery smooth muscle cells.
    Forrest AS; Angermann JE; Raghunathan R; Lachendro C; Greenwood IA; Leblanc N
    Adv Exp Med Biol; 2010; 661():31-55. PubMed ID: 20204722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.