These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16815767)

  • 1. Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: a case study.
    Vracko M; Bandelj V; Barbieri P; Benfenati E; Chaudhry Q; Cronin M; Devillers J; Gallegos A; Gini G; Gramatica P; Helma C; Mazzatorta P; Neagu D; Netzeva T; Pavan M; Patlewicz G; Randić M; Tsakovska I; Worth A
    SAR QSAR Environ Res; 2006 Jun; 17(3):265-84. PubMed ID: 16815767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a QSAR model for acute toxicity.
    Pavan M; Netzeva TI; Worth AP
    SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow).
    Papa E; Villa F; Gramatica P
    J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using fragment chemistry data mining and probabilistic neural networks in screening chemicals for acute toxicity to the fathead minnow.
    Niculescu SP; Atkinson A; Hammond G; Lewis M
    SAR QSAR Environ Res; 2004 Aug; 15(4):293-309. PubMed ID: 15370419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas).
    Cassotti M; Ballabio D; Todeschini R; Consonni V
    SAR QSAR Environ Res; 2015; 26(3):217-43. PubMed ID: 25780951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning neural and fuzzy-neural networks for toxicity modeling.
    Mazzatorta P; Benfenati E; Neagu CD; Gini G
    J Chem Inf Comput Sci; 2003; 43(2):513-8. PubMed ID: 12653515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
    Nandi S; Vracko M; Bagchi MC
    Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A QSAR for baseline toxicity: validation, domain of application, and prediction.
    Oberg T
    Chem Res Toxicol; 2004 Dec; 17(12):1630-7. PubMed ID: 15606139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal and external validation of the long-term QSARs for neutral organics to fish from ECOSAR™.
    de Haas EM; Eikelboom T; Bouwman T
    SAR QSAR Environ Res; 2011; 22(5-6):545-59. PubMed ID: 21732893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of organic chemicals to fathead minnow: a united quantitative structure-activity relationship model and its application.
    Feng L; Han S; Zhao Y; Wang L; Chen J
    Chem Res Toxicol; 1996; 9(3):610-3. PubMed ID: 8728506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of fathead minnow acute toxicity of organic compounds from molecular structure.
    Eldred DV; Weikel CL; Jurs PC; Kaiser KL
    Chem Res Toxicol; 1999 Jul; 12(7):670-8. PubMed ID: 10409408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSAR model for predicting pesticide aquatic toxicity.
    Mazzatorta P; Smiesko M; Lo Piparo E; Benfenati E
    J Chem Inf Model; 2005; 45(6):1767-74. PubMed ID: 16309283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow.
    Yuan H; Wang YY; Cheng YY
    J Mol Graph Model; 2007 Jul; 26(1):327-35. PubMed ID: 17224289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new strategy for using supervised artificial neural networks in QSAR.
    Devillers J
    SAR QSAR Environ Res; 2005 Oct; 16(5):433-42. PubMed ID: 16272042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local and global quantitative structure-activity relationship modeling and prediction for the baseline toxicity.
    Yuan H; Wang Y; Cheng Y
    J Chem Inf Model; 2007; 47(1):159-69. PubMed ID: 17238261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directions in QSAR modeling for regulatory uses in OECD member countries, EU and in Russia.
    Fjodorova N; Novich M; Vrachko M; Smirnov V; Kharchevnikova N; Zholdakova Z; Novikov S; Skvortsova N; Filimonov D; Poroikov V; Benfenati E
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2008; 26(2):201-36. PubMed ID: 18569330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of chemical toxicity with local support vector regression and activity-specific kernels.
    Maunz A; Helma C
    SAR QSAR Environ Res; 2008; 19(5-6):413-31. PubMed ID: 18853295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.
    Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM
    Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QSAR model for predicting the toxicity of organic compounds to fathead minnow.
    Jia Q; Zhao Y; Yan F; Wang Q
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35420-35428. PubMed ID: 30350137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders.
    Marini F; Roncaglioni A; Novic M
    J Chem Inf Model; 2005; 45(6):1507-19. PubMed ID: 16309247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.