BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 16815821)

  • 1. Electrotonic transmission within pericyte-containing retinal microvessels.
    Wu DM; Minami M; Kawamura H; Puro DG
    Microcirculation; 2006; 13(5):353-63. PubMed ID: 16815821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelin-induced changes in the physiology of retinal pericytes.
    Kawamura H; Oku H; Li Q; Sakagami K; Puro DG
    Invest Ophthalmol Vis Sci; 2002 Mar; 43(3):882-8. PubMed ID: 11867611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine activates ATP-sensitive K+ currents in rat retinal pericytes.
    Wu DM; Kawamura H; Li Q; Puro DG
    Vis Neurosci; 2001; 18(6):935-40. PubMed ID: 12020084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of angiotensin II on the pericyte-containing microvasculature of the rat retina.
    Kawamura H; Kobayashi M; Li Q; Yamanishi S; Katsumura K; Minami M; Wu DM; Puro DG
    J Physiol; 2004 Dec; 561(Pt 3):671-83. PubMed ID: 15486015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina.
    Kawamura H; Sugiyama T; Wu DM; Kobayashi M; Yamanishi S; Katsumura K; Puro DG
    J Physiol; 2003 Sep; 551(Pt 3):787-99. PubMed ID: 12876212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide/cGMP-induced inhibition of calcium and chloride currents in retinal pericytes.
    Sakagami K; Kawamura H; Wu DM; Puro DG
    Microvasc Res; 2001 Sep; 62(2):196-203. PubMed ID: 11516249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insulin-induced hyperpolarization in retinal capillary pericytes.
    Berweck S; Thieme H; Lepple-Wienhues A; Helbig H; Wiederholt M
    Invest Ophthalmol Vis Sci; 1993 Nov; 34(12):3402-7. PubMed ID: 8225875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature.
    Yamanishi S; Katsumura K; Kobayashi T; Puro DG
    Am J Physiol Heart Circ Physiol; 2006 Mar; 290(3):H925-34. PubMed ID: 16299264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine activates ATP-sensitive K(+) currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors.
    Li Q; Puro DG
    Brain Res; 2001 Jul; 907(1-2):93-9. PubMed ID: 11430889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAD+-induced vasotoxicity in the pericyte-containing microvasculature of the rat retina: effect of diabetes.
    Liao SD; Puro DG
    Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):5032-8. PubMed ID: 17065524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PDGF-induced coupling of function with metabolism in microvascular pericytes of the retina.
    Sakagami K; Kodama T; Puro DG
    Invest Ophthalmol Vis Sci; 2001 Jul; 42(8):1939-44. PubMed ID: 11431464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiology and pathobiology of the pericyte-containing retinal microvasculature: new developments.
    Puro DG
    Microcirculation; 2007 Jan; 14(1):1-10. PubMed ID: 17365657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiology of rat retinal pericytes: modulation of ion channel activity by serum-derived molecules.
    Sakagami K; Wu DM; Puro DG
    J Physiol; 1999 Dec; 521 Pt 3(Pt 3):637-50. PubMed ID: 10601495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PGI2 opens potassium channels in retinal pericytes by cyclic AMP-stimulated, cross-activation of PKG.
    Burnette JO; White RE
    Exp Eye Res; 2006 Dec; 83(6):1359-65. PubMed ID: 16959250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blockers of carbonic anhydrase can cause increase of retinal capillary diameter, decrease of extracellular and increase of intracellular pH in rat retinal organ culture.
    Reber F; Gersch U; Funk RW
    Graefes Arch Clin Exp Ophthalmol; 2003 Feb; 241(2):140-8. PubMed ID: 12605269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of descending vasa recta pericyte membrane potential by angiotensin II.
    Pallone TL; Huang JM
    Am J Physiol Renal Physiol; 2002 Jun; 282(6):F1064-74. PubMed ID: 11997323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic regulation of pericyte-containing retinal microvessels.
    Wu DM; Kawamura H; Sakagami K; Kobayashi M; Puro DG
    Am J Physiol Heart Circ Physiol; 2003 Jun; 284(6):H2083-90. PubMed ID: 12560212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diabetes-induced disruption of gap junction pathways within the retinal microvasculature.
    Oku H; Kodama T; Sakagami K; Puro DG
    Invest Ophthalmol Vis Sci; 2001 Jul; 42(8):1915-20. PubMed ID: 11431461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topographical heterogeneity of K(IR) currents in pericyte-containing microvessels of the rat retina: effect of diabetes.
    Matsushita K; Puro DG
    J Physiol; 2006 Jun; 573(Pt 2):483-95. PubMed ID: 16581863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of insulin-mediated vasoprotection: early effect of diabetes on pericyte-containing microvessels of the retina.
    Kobayashi T; Puro DG
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2350-5. PubMed ID: 17460301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.