These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 16815912)

  • 21. Rates of unfolding, rather than refolding, determine thermal stabilities of thermophilic, mesophilic, and psychrotrophic 3-isopropylmalate dehydrogenases.
    Gráczer E; Varga A; Hajdú I; Melnik B; Szilágyi A; Semisotnov G; Závodszky P; Vas M
    Biochemistry; 2007 Oct; 46(41):11536-49. PubMed ID: 17887729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure, stability, and folding of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues.
    Ratcliff K; Corn J; Marqusee S
    Biochemistry; 2009 Jun; 48(25):5890-8. PubMed ID: 19408959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and flexibility of the thermophilic cold-shock protein of Thermus aquaticus.
    Jin B; Jeong KW; Kim Y
    Biochem Biophys Res Commun; 2014 Aug; 451(3):402-7. PubMed ID: 25101648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study.
    Chakravarty S; Varadarajan R
    Biochemistry; 2002 Jun; 41(25):8152-61. PubMed ID: 12069608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distributions of structural features contributing to thermostability in mesophilic and thermophilic alpha/beta barrel glycosyl hydrolases.
    Panasik N; Brenchley JE; Farber GK
    Biochim Biophys Acta; 2000 Nov; 1543(1):189-201. PubMed ID: 11087953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermostability in rubredoxin and its relationship to mechanical rigidity.
    Rader AJ
    Phys Biol; 2009 Dec; 7():16002. PubMed ID: 20009190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrostatic stabilization of a thermophilic cold shock protein.
    Perl D; Schmid FX
    J Mol Biol; 2001 Oct; 313(2):343-57. PubMed ID: 11800561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors enhancing protein thermostability.
    Kumar S; Tsai CJ; Nussinov R
    Protein Eng; 2000 Mar; 13(3):179-91. PubMed ID: 10775659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Entropic contribution to enhanced thermal stability in the thermostable P450 CYP119.
    Liu Z; Lemmonds S; Huang J; Tyagi M; Hong L; Jain N
    Proc Natl Acad Sci U S A; 2018 Oct; 115(43):E10049-E10058. PubMed ID: 30297413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of residual structure in the unfolded state of a thermophilic protein.
    Robic S; Guzman-Casado M; Sanchez-Ruiz JM; Marqusee S
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11345-9. PubMed ID: 14504401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. All-Atom Simulations Reveal Protein Charge Decoration in the Folded and Unfolded Ensemble Is Key in Thermophilic Adaptation.
    Sawle L; Huihui J; Ghosh K
    J Chem Theory Comput; 2017 Oct; 13(10):5065-5075. PubMed ID: 28915352
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural features of thermozymes.
    Li WF; Zhou XX; Lu P
    Biotechnol Adv; 2005 Jun; 23(4):271-81. PubMed ID: 15848038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two exposed amino acid residues confer thermostability on a cold shock protein.
    Perl D; Mueller U; Heinemann U; Schmid FX
    Nat Struct Biol; 2000 May; 7(5):380-3. PubMed ID: 10802734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of histidine-containing phosphocarrier protein from Thermoanaerobacter tengcongensis MB4 and the implications for thermostability.
    Feng C; Gao F; Liu Y; Wang G; Peng H; Ma Y; Yan J; Gao GF
    Sci China Life Sci; 2011 Jun; 54(6):513-9. PubMed ID: 21706411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative molecular dynamics study of thermophilic and mesophilic ribonuclease HI enzymes.
    Tang L; Liu H
    J Biomol Struct Dyn; 2007 Feb; 24(4):379-92. PubMed ID: 17206853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The entropic nature of protein thermal stabilization.
    Khechinashvili NN; Capital Ka Cyrillicabanov AV; Kondratyev MS; Polozov RV
    J Biomol Struct Dyn; 2014; 32(9):1396-405. PubMed ID: 23879480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermostability of Enzymes from Molecular Dynamics Simulations.
    Zeiske T; Stafford KA; Palmer AG
    J Chem Theory Comput; 2016 Jun; 12(6):2489-92. PubMed ID: 27123810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substitutions of coenzyme-binding, nonpolar residues improve the low-temperature activity of thermophilic dehydrogenases.
    Hayashi S; Akanuma S; Onuki W; Tokunaga C; Yamagishi A
    Biochemistry; 2011 Oct; 50(40):8583-93. PubMed ID: 21894900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.