These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 16815958)

  • 1. Cold-active winter rye glucanases with ice-binding capacity.
    Yaish MW; Doxey AC; McConkey BJ; Moffatt BA; Griffith M
    Plant Physiol; 2006 Aug; 141(4):1459-72. PubMed ID: 16815958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins.
    Hon WC; Griffith M; Mlynarz A; Kwok YC; Yang DS
    Plant Physiol; 1995 Nov; 109(3):879-89. PubMed ID: 8552719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifreeze proteins modify the freezing process in planta.
    Griffith M; Lumb C; Wiseman SB; Wisniewski M; Johnson RW; Marangoni AG
    Plant Physiol; 2005 May; 138(1):330-40. PubMed ID: 15805474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Enzymatically Active β-1,3-Glucanase from Ash Pollen with Allergenic Properties: A Particular Member in the Oleaceae Family.
    Torres M; Palomares O; Quiralte J; Pauli G; Rodríguez R; Villalba M
    PLoS One; 2015; 10(7):e0133066. PubMed ID: 26177095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylene induces antifreeze activity in winter rye leaves.
    Yu XM; Griffith M; Wiseman SB
    Plant Physiol; 2001 Jul; 126(3):1232-40. PubMed ID: 11457973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifreeze proteins in overwintering plants: a tale of two activities.
    Griffith M; Yaish MW
    Trends Plant Sci; 2004 Aug; 9(8):399-405. PubMed ID: 15358271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium interacts with antifreeze proteins and chitinase from cold-acclimated winter rye.
    Stressmann M; Kitao S; Griffith M; Moresoli C; Bravo LA; Marangoni AG
    Plant Physiol; 2004 May; 135(1):364-76. PubMed ID: 15122015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitinase genes responsive to cold encode antifreeze proteins in winter cereals.
    Yeh S; Moffatt BA; Griffith M; Xiong F; Yang DS; Wiseman SB; Sarhan F; Danyluk J; Xue YQ; Hew CL; Doherty-Kirby A; Lajoie G
    Plant Physiol; 2000 Nov; 124(3):1251-64. PubMed ID: 11080301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunolocalization of Antifreeze Proteins in Winter Rye Leaves, Crowns, and Roots by Tissue Printing.
    Antikainen M; Griffith M; Zhang J; Hon WC; Yang D; Pihakaski-Maunsbach K
    Plant Physiol; 1996 Mar; 110(3):845-857. PubMed ID: 12226223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Winter rye antifreeze activity increases in response to cold and drought, but not abscisic acid.
    Yu XM; Griffith M
    Physiol Plant; 2001 May; 112(1):78-86. PubMed ID: 11319018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-1,3-Glucanases and chitinases participate in the stress-related defence mechanisms that are possibly connected with modulation of arabinogalactan proteins (AGP) required for the androgenesis initiation in rye (Secale cereale L.).
    Zieliński K; Dubas E; Gerši Z; Krzewska M; Janas A; Nowicka A; Matušíková I; Żur I; Sakuda S; Moravčíková J
    Plant Sci; 2021 Jan; 302():110700. PubMed ID: 33288013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifreeze proteins in winter rye leaves form oligomeric complexes.
    Yu XM; Griffith M
    Plant Physiol; 1999 Apr; 119(4):1361-70. PubMed ID: 10198095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Cysteine-Rich Ice-Binding Protein Secreted from Antarctic Microalga, Chloromonas sp.
    Jung W; Campbell RL; Gwak Y; Kim JI; Davies PL; Jin E
    PLoS One; 2016; 11(4):e0154056. PubMed ID: 27097164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifreeze protein produced endogenously in winter rye leaves.
    Griffith M; Ala P; Yang DS; Hon WC; Moffatt BA
    Plant Physiol; 1992 Oct; 100(2):593-6. PubMed ID: 16653033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifreeze activity of cold acclimated Japanese radish and purification of antifreeze peptide.
    Kawahara H; Fujii A; Inoue M; Kitao S; Fukuoka J; Obata H
    Cryo Letters; 2009; 30(2):119-31. PubMed ID: 19448861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in gene expression during dehardening of cold-hardened winter rye (Secale cereale L.) leaves and potential role of a peptide methionine sulfoxide reductase in cold-acclimation.
    In O; Berberich T; Romdhane S; Feierabend J
    Planta; 2005 Apr; 220(6):941-50. PubMed ID: 15843963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Snow-mold-induced apoplastic proteins in winter rye leaves lack antifreeze activity.
    Hiilovaara-Teijo M; Hannukkala A; Griffith M; Yu XM; Pihakaski-Maunsbach K
    Plant Physiol; 1999 Oct; 121(2):665-74. PubMed ID: 10517859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic efficiency diversification of duplicate β-1,3-1,4-glucanases from Neocallimastix patriciarum J11.
    Hung YL; Chen HJ; Liu JC; Chen YC
    Appl Environ Microbiol; 2012 Jun; 78(12):4294-300. PubMed ID: 22492445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins.
    Cabello JV; Arce AL; Chan RL
    Plant J; 2012 Jan; 69(1):141-53. PubMed ID: 21899607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the glucanase inhibitor protein (GIP) family from phytophthora species suggests coevolution with plant endo-beta-1,3-glucanases.
    Damasceno CM; Bishop JG; Ripoll DR; Win J; Kamoun S; Rose JK
    Mol Plant Microbe Interact; 2008 Jun; 21(6):820-30. PubMed ID: 18624645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.