BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16816747)

  • 1. Exogenous cross-linking increases the stability of spinal motion segments.
    Hedman TP; Saito H; Vo C; Chuang SY
    Spine (Phila Pa 1976); 2006 Jul; 31(15):E480-5. PubMed ID: 16816747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of exogenous crosslinking on hydration and fluid flow in the intervertebral disc subjected to compressive creep loading and unloading.
    Chuang SY; Popovich JM; Lin LC; Hedman TP
    Spine (Phila Pa 1976); 2010 Nov; 35(24):E1362-6. PubMed ID: 21030899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dose response relationship between intervertebral disc flexion-extension neutral zone metrics and injected genipin concentration.
    Kirking BC; Toungate JK; Hedman TP
    J Appl Biomater Funct Mater; 2013 Sep; 11(2):e73-9. PubMed ID: 23728539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological and dynamic integrity of simulated degenerated disc and consequences after cross-linker augmentation.
    Hsu YC; Kuo YW; Chang YC; Nikkhoo M; Wang JL
    Spine (Phila Pa 1976); 2013 Nov; 38(23):E1446-53. PubMed ID: 23873230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exogenous collagen crosslinking of the intervertebral disc restores joint stability after lumbar posterior decompression surgery.
    Popovich JM; Yau D; Chuang SY; Hedman TP
    Spine (Phila Pa 1976); 2011 May; 36(12):939-44. PubMed ID: 21150698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining the Neutral Zone of sheep intervertebral joints during dynamic motions: an in vitro study.
    Thompson RE; Barker TM; Pearcy MJ
    Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):89-98. PubMed ID: 12550806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The stiffness of lumbar spinal motion segments with a high-intensity zone in the anulus fibrosus.
    Schmidt TA; An HS; Lim TH; Nowicki BH; Haughton VM
    Spine (Phila Pa 1976); 1998 Oct; 23(20):2167-73. PubMed ID: 9802156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discogenic origins of spinal instability.
    Zhao F; Pollintine P; Hole BD; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2005 Dec; 30(23):2621-30. PubMed ID: 16319748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical analysis of rotational motions after disc arthroplasty: implications for patients with adult deformities.
    McAfee PC; Cunningham BW; Hayes V; Sidiqi F; Dabbah M; Sefter JC; Hu N; Beatson H
    Spine (Phila Pa 1976); 2006 Sep; 31(19 Suppl):S152-60. PubMed ID: 16946633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The basis of mechanical instability in degenerative disc disease: a cadaveric study of abnormal motion versus load distribution.
    Sengupta DK; Fan H
    Spine (Phila Pa 1976); 2014 Jun; 39(13):1032-43. PubMed ID: 24583744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of protein crosslinking formulations for the treatment of degenerative disc disease.
    Slusarewicz P; Zhu K; Kirking B; Toungate J; Hedman T
    Spine (Phila Pa 1976); 2011 Jan; 36(1):E7-13. PubMed ID: 20595926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function.
    Yerramalli CS; Chou AI; Miller GJ; Nicoll SB; Chin KR; Elliott DM
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):13-20. PubMed ID: 16715318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thoracic range of motion, stability, and correlation to imaging-determined degeneration.
    Healy AT; Mageswaran P; Lubelski D; Rosenbaum BP; Matheus V; Benzel EC; Mroz TE
    J Neurosurg Spine; 2015 Aug; 23(2):170-7. PubMed ID: 25978074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moderately degenerated lumbar motion segments: Are they truly unstable?
    van Rijsbergen MM; Barthelemy VM; Vrancken AC; Crijns SP; Wilke HJ; Wilson W; van Rietbergen B; Ito K
    Biomech Model Mechanobiol; 2017 Apr; 16(2):537-547. PubMed ID: 27664020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vitro animal study of the biomechanical responses of anulus fibrosus with aging.
    Park C; Kim YJ; Lee CS; An K; Shin HJ; Lee CH; Kim CH; Shin JW
    Spine (Phila Pa 1976); 2005 May; 30(10):E259-65. PubMed ID: 15897815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments.
    Sim HB; Murovic JA; Cho BY; Lim TJ; Park J
    J Neurosurg Spine; 2010 Jun; 12(6):700-8. PubMed ID: 20515358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exogenous crosslinking recovers the functional integrity of intervertebral disc secondary to a stab injury.
    Chuang SY; Lin LC; Tsai YC; Wang JL
    J Biomed Mater Res A; 2010 Jan; 92(1):297-302. PubMed ID: 19189385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled motion with the XL-TDR lateral-approach lumbar total disk replacement: in vitro kinematic investigation.
    Pimenta L; Turner A; Oliveira L; Marchi L; Cornwall B
    J Neurol Surg A Cent Eur Neurosurg; 2015 Mar; 76(2):133-8. PubMed ID: 25545808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical study on the effect of five different lumbar reconstruction techniques on adjacent-level intradiscal pressure and lamina strain.
    Sudo H; Oda I; Abumi K; Ito M; Kotani Y; Minami A
    J Neurosurg Spine; 2006 Aug; 5(2):150-5. PubMed ID: 16925082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cumulative multiple freeze-thaw cycles and testing does not affect subsequent within-day variation in intervertebral flexibility of human cadaveric lumbosacral spine.
    Tan JS; Uppuganti S
    Spine (Phila Pa 1976); 2012 Sep; 37(20):E1238-42. PubMed ID: 22660554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.