These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 168172)

  • 1. On the effect of N-methyl-bis (3-mesyloxypropyl) amine hydroxychloride on Bacillus subtilis cells.
    Shimi IR; Shoukry S
    J Antibiot (Tokyo); 1975 Jun; 28(6):448-52. PubMed ID: 168172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of parabens on DNA, RNA and protein synthesis in Escherichia coli and Bacillus subtilis.
    Nes IF; Eklund T
    J Appl Bacteriol; 1983 Apr; 54(2):237-42. PubMed ID: 6189812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of carzinophillin on bacterial deoxyribonucleic acid: formation of inter-strand cross-links in deoxyribonucleic acid and their disappearance during post-treatment incubation.
    Terawaki A; Greenberg J
    Nature; 1966 Jan; 209(5022):481-4. PubMed ID: 4958487
    [No Abstract]   [Full Text] [Related]  

  • 4. Mechanism of action of antitumor agents on bacteria. II. Effect of acetyl-kidamycin on nucleic acids.
    Kumazawa M; Inada S; Namiki M; Ishii S; Tago K
    Kitasato Arch Exp Med; 1974 Sep; 47(3):79-88. PubMed ID: 4218625
    [No Abstract]   [Full Text] [Related]  

  • 5. Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis.
    Ulvatne H; Samuelsen Ø; Haukland HH; Krämer M; Vorland LH
    FEMS Microbiol Lett; 2004 Aug; 237(2):377-84. PubMed ID: 15321686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunosuppressive and antitumor activities of N-methyl-bis(3-mesyloxypropyl)amine hydrochloride and bis(3-mesyloxypropyl)amine hydrochloride.
    Ootsu K; Matsumoto T
    Gan; 1970 Aug; 61(4):397-401. PubMed ID: 5454688
    [No Abstract]   [Full Text] [Related]  

  • 7. On the mode of action of ASK-753, a new iron-containing antibiotic.
    Khafagy EZ; Haroun BM
    J Antibiot (Tokyo); 1974 Nov; 27(11):874-83. PubMed ID: 4217791
    [No Abstract]   [Full Text] [Related]  

  • 8. Mechanism of action of chromomycin A3. 1. Inhibition of nucleic acid metabolism in Bacillus subtilis cells.
    Kamiyama M; Kaziro Y
    J Biochem; 1966 Jan; 59(1):49-56. PubMed ID: 4957278
    [No Abstract]   [Full Text] [Related]  

  • 9. Antimicrobial activities of daunorubicin and adriamycin derivatives on bacterial and protoplast type L-form cells of Bacillus subtilis 170, Escherichia coli B, and Proteus mirabilis VI. Structure--activity relationship.
    Gumpert J; Dornberger K; Smith TH
    Z Allg Mikrobiol; 1982; 22(10):687-92. PubMed ID: 6188285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miracil D: an inhibitor of ribonucleic acid synthesis in Bacillus subtilis.
    Weinstein IB; Chernoff R; Finkelstein I; Hirschberg E
    Mol Pharmacol; 1965 Nov; 1(3):297-305. PubMed ID: 4954156
    [No Abstract]   [Full Text] [Related]  

  • 11. Bacteristatic activity of phenanthrolines against Escherichia coli and Bacillus subtilis.
    Sharrock P
    Can J Microbiol; 1985 Apr; 31(4):367-70. PubMed ID: 3924386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Inhibition of RNA syntheses under the action of antibiotic 6270 from echinomycin group in bacterial and animal cells].
    Gauze GG; Dudnik IuV; Loshkareva NP; Zbarskiĭ IB
    Antibiotiki; 1966 May; 11(5):423-6. PubMed ID: 4967041
    [No Abstract]   [Full Text] [Related]  

  • 13. [On the mechanism of action of rubomycin].
    Dudnik IuV; Gauze GG
    Antibiotiki; 1967 Jan; 12(1):17-22. PubMed ID: 4968830
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on the control of development. Differences in the pattern of DNA binding proteins isolated from vegetative and sporulating cells of Bacillus subtilis.
    Rhaese HJ; Schubert M; Schwulera U
    FEBS Lett; 1974 Aug; 44(1):94-6. PubMed ID: 4369233
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of 1,1'-hexamethylene-bis-[(5-p-chlorophenyl)-biguanide] on the genome and on the synthesis of nucleic acids and proteins in the bacterial cells.
    Ackermann-Schmidt B; Süssmuth R; Lingens F
    Chem Biol Interact; 1982 May; 40(1):85-96. PubMed ID: 6176342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of the mechanism of action of the antitumor agent 5(4)-(3,3-dimethyl-1-triazeno) imidazole-4(5)-carboxamide in Bacillus subtilis.
    Saunders PP; Schultz GA
    Biochem Pharmacol; 1970 Mar; 19(3):911-9. PubMed ID: 4994358
    [No Abstract]   [Full Text] [Related]  

  • 17. Antimicrobial effect and proposed action mechanism of cordycepin against Escherichia coli and Bacillus subtilis.
    Jiang Q; Lou Z; Wang H; Chen C
    J Microbiol; 2019 Apr; 57(4):288-297. PubMed ID: 30929229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of 4-diazoimidazole-5-carboxamide in the action of the antitumor agent 5(4)-(3,3-dimethyl-1-triazeno) imidazole-4-(5)carboxamide in Bacillus subtilis.
    Saunders PP; Schultz GA
    Biochem Pharmacol; 1972 Aug; 21(15):2065-76. PubMed ID: 4630320
    [No Abstract]   [Full Text] [Related]  

  • 19. Rifamycins LXI: in vivo inhibition of RNA synthesis of rifamycins.
    Lancini GC; Sartori G
    Experientia; 1968 Nov; 24(11):1105-6. PubMed ID: 4976418
    [No Abstract]   [Full Text] [Related]  

  • 20. Lipiarmycin, a new antibiotic from Actinoplanes III. Mechanism of action.
    Sergio S; Pirali G; White R; Parenti F
    J Antibiot (Tokyo); 1975 Jul; 28(7):543-9. PubMed ID: 807550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.