BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 16817233)

  • 21. Hydrogen Bond Dynamic Propensity Studies for Protein Binding and Drug Design.
    Menéndez CA; Accordino SR; Gerbino DC; Appignanesi GA
    PLoS One; 2016; 11(10):e0165767. PubMed ID: 27792778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizing the conformational landscape of MDM2-binding p53 peptides using Molecular Dynamics simulations.
    Yadahalli S; Li J; Lane DP; Gosavi S; Verma CS
    Sci Rep; 2017 Nov; 7(1):15600. PubMed ID: 29142290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular interaction fields and 3D-QSAR studies of p53-MDM2 inhibitors suggest additional features of ligand-target interaction.
    Dezi C; Carotti A; Magnani M; Baroni M; Padova A; Cruciani G; Macchiarulo A; Pellicciari R
    J Chem Inf Model; 2010 Aug; 50(8):1451-65. PubMed ID: 20726601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics studies on Mdm2 complexes: an analysis of the inhibitor influence.
    Almerico AM; Tutone M; Pantano L; Lauria A
    Biochem Biophys Res Commun; 2012 Jul; 424(2):341-7. PubMed ID: 22771796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulating molecular mechanisms of the MDM2-mediated regulatory interactions: a conformational selection model of the MDM2 lid dynamics.
    Verkhivker GM
    PLoS One; 2012; 7(7):e40897. PubMed ID: 22815859
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The molecular dynamics of MDM2.
    Nicholson J; Hupp TR
    Cell Cycle; 2010 May; 9(10):1878-81. PubMed ID: 20436290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics simulations studies and free energy analysis on inhibitors of MDM2-p53 interaction.
    Niu RJ; Zheng QC; Zhang JL; Zhang HX
    J Mol Graph Model; 2013 Nov; 46():132-9. PubMed ID: 24211465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of antipsychotic drug fluspirilene as a potential p53-MDM2 inhibitor: a combined computational and experimental study.
    Patil SP; Pacitti MF; Gilroy KS; Ruggiero JC; Griffin JD; Butera JJ; Notarfrancesco JM; Tran S; Stoddart JW
    J Comput Aided Mol Des; 2015 Feb; 29(2):155-63. PubMed ID: 25377899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction.
    Pettersson M; Quant M; Min J; Iconaru L; Kriwacki RW; Waddell MB; Guy RK; Luthman K; Grøtli M
    PLoS One; 2015; 10(10):e0137867. PubMed ID: 26427060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovery of a nanomolar inhibitor of the human murine double minute 2 (MDM2)-p53 interaction through an integrated, virtual database screening strategy.
    Lu Y; Nikolovska-Coleska Z; Fang X; Gao W; Shangary S; Qiu S; Qin D; Wang S
    J Med Chem; 2006 Jun; 49(13):3759-62. PubMed ID: 16789731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bridging Microscopic and Macroscopic Mechanisms of p53-MDM2 Binding with Kinetic Network Models.
    Zhou G; Pantelopulos GA; Mukherjee S; Voelz VA
    Biophys J; 2017 Aug; 113(4):785-793. PubMed ID: 28834715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing the origin of structural stability of single and double stapled p53 peptide analogs bound to MDM2.
    Guo Z; Streu K; Krilov G; Mohanty U
    Chem Biol Drug Des; 2014 Jun; 83(6):631-42. PubMed ID: 24418072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical states of the N-terminal "lid" of MDM2 regulate p53 binding: simulations reveal complexities of modulation.
    Dastidar SG; Raghunathan D; Nicholson J; Hupp TR; Lane DP; Verma CS
    Cell Cycle; 2011 Jan; 10(1):82-9. PubMed ID: 21191186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational analysis of spiro-oxindole inhibitors of the MDM2-p53 interaction: insights and selection of novel inhibitors.
    Huang W; Cai L; Chen C; Xie X; Zhao Q; Zhao X; Zhou HY; Han B; Peng C
    J Biomol Struct Dyn; 2016; 34(2):341-51. PubMed ID: 25808617
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation.
    Zheng J; Lang Y; Zhang Q; Cui D; Sun H; Jiang L; Chen Z; Zhang R; Gao Y; Tian W; Wu W; Tang J; Chen Z
    Genes Dev; 2015 Jul; 29(14):1524-34. PubMed ID: 26220995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient Atomistic Simulation of Pathways and Calculation of Rate Constants for a Protein-Peptide Binding Process: Application to the MDM2 Protein and an Intrinsically Disordered p53 Peptide.
    Zwier MC; Pratt AJ; Adelman JL; Kaus JW; Zuckerman DM; Chong LT
    J Phys Chem Lett; 2016 Sep; 7(17):3440-5. PubMed ID: 27532687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Why is F19Ap53 unable to bind MDM2? Simulations suggest crack propagation modulates binding.
    Dastidar SG; Lane DP; Verma CS
    Cell Cycle; 2012 Jun; 11(12):2239-47. PubMed ID: 22617389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of the K24N mutation on the transactivation domain of p53 and its binding to murine double-minute clone 2.
    Zhan YA; Wu H; Powell AT; Daughdrill GW; Ytreberg FM
    Proteins; 2013 Oct; 81(10):1738-47. PubMed ID: 23609977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanism of the interaction between MDM2 and p53.
    Schon O; Friedler A; Bycroft M; Freund SM; Fersht AR
    J Mol Biol; 2002 Oct; 323(3):491-501. PubMed ID: 12381304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of p53 binding to MDM2: computational studies reveal important roles of Tyr100.
    Dastidar SG; Lane DP; Verma CS
    BMC Bioinformatics; 2009 Dec; 10 Suppl 15(Suppl 15):S6. PubMed ID: 19958516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.