These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16817579)

  • 1. A finite element study of age-based size and shape variation of the human rib cage.
    Gayzik FS; Loftis KL; Slice DE; Stitzel JD
    Biomed Sci Instrum; 2006; 42():19-24. PubMed ID: 16817579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of age-related shape change of the human rib cage through geometric morphometrics.
    Gayzik FS; Yu MM; Danelson KA; Slice DE; Stitzel JD
    J Biomech; 2008; 41(7):1545-54. PubMed ID: 18384793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the rib cage on thoracic spine flexibility.
    Sham ML; Zander T; Rohlmann A; Bergmann G
    Biomed Tech (Berl); 2005 Nov; 50(11):361-5. PubMed ID: 16370149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biomechanical response of human bone: the influence of bone volume and mineral density.
    Kemper A; Ng T; Duma S
    Biomed Sci Instrum; 2006; 42():284-9. PubMed ID: 16817622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age- and sex-specific thorax finite element model development and simulation.
    Schoell SL; Weaver AA; Vavalle NA; Stitzel JD
    Traffic Inj Prev; 2015; 16 Suppl 1():S57-65. PubMed ID: 26027976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element models of rib as an inhomogeneous beam structure under high-speed impacts.
    Niu Y; Shen W; Stuhmiller JH
    Med Eng Phys; 2007 Sep; 29(7):788-98. PubMed ID: 17045511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Establishment of a 3D finite element model of human thoracic cage and biomechanical analysis].
    Shao Y; Huang P; Li ZD; Liu NG; Wan L; Zou DH; Chen YJ
    Fa Yi Xue Za Zhi; 2013 Apr; 29(2):81-5. PubMed ID: 23930497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational model of rib movement and its application in studying the effects of age-related thoracic cage calcification on respiratory system.
    Vaziri A; Nayeb-Hashemi H; Akhavan-Tafti B
    Comput Methods Biomech Biomed Engin; 2010; 13(2):257-64. PubMed ID: 19927242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of assumed stiffness and mass density on the impact response of the human chest using a three-dimensional FE model of the human body.
    Kimpara H; Iwamoto M; Watanabe I; Miki K; Lee JB; Yang KH; King AI
    J Biomech Eng; 2006 Oct; 128(5):772-6. PubMed ID: 16995765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological and functional implications of sexual dimorphism in the human skeletal thorax.
    García-Martínez D; Torres-Tamayo N; Torres-Sanchez I; García-Río F; Bastir M
    Am J Phys Anthropol; 2016 Nov; 161(3):467-477. PubMed ID: 27444750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of body weight, height, and rib cage area moment of inertia on blunt chest impact response.
    Kimpara H; Lee JB; Yang KH; King AI
    Traffic Inj Prev; 2010 Apr; 11(2):207-14. PubMed ID: 20373242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-dependent factors affecting thoracic response: a finite element study focused on Japanese elderly occupants.
    Antona-Makoshi J; Yamamoto Y; Kato R; Sato F; Ejima S; Dokko Y; Yasuki T
    Traffic Inj Prev; 2015; 16 Suppl 1():S66-74. PubMed ID: 26027977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of rib cage surgery for the management of scoliotic deformities.
    Gréalou L; Aubin CE; Sevastik JA; Labelle H
    Stud Health Technol Inform; 2002; 88():345-9. PubMed ID: 15456059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ontogeny of 3D rib curvature and its importance for the understanding of human thorax development.
    García-Martínez D; Recheis W; Bastir M
    Am J Phys Anthropol; 2016 Mar; 159(3):423-31. PubMed ID: 26890054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of factors influencing finite element vertebral model predictions.
    Jones AC; Wilcox RK
    J Biomech Eng; 2007 Dec; 129(6):898-903. PubMed ID: 18067394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A statistical human rib cage geometry model accounting for variations by age, sex, stature and body mass index.
    Shi X; Cao L; Reed MP; Rupp JD; Hoff CN; Hu J
    J Biomech; 2014 Jul; 47(10):2277-85. PubMed ID: 24861634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nonlinear finite element model of cartilage growth.
    Davol A; Bingham MS; Sah RL; Klisch SM
    Biomech Model Mechanobiol; 2008 Aug; 7(4):295-307. PubMed ID: 17701433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphometric analysis of variation in the ribs with age and sex.
    Weaver AA; Schoell SL; Stitzel JD
    J Anat; 2014 Aug; 225(2):246-61. PubMed ID: 24917069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirements for comparing the performance of finite element models of biological structures.
    Dumont ER; Grosse IR; Slater GJ
    J Theor Biol; 2009 Jan; 256(1):96-103. PubMed ID: 18834892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.