BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 16817614)

  • 1. A single moving dipole model of ventricular depolarization.
    Bu G; Berbari EJ
    Biomed Sci Instrum; 2006; 42():237-42. PubMed ID: 16817614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The QRS complex--a biomarker that "images" the heart: QRS scores to quantify myocardial scar in the presence of normal and abnormal ventricular conduction.
    Strauss DG; Selvester RH
    J Electrocardiol; 2009; 42(1):85-96. PubMed ID: 18790501
    [No Abstract]   [Full Text] [Related]  

  • 3. Statistical accuracy of a moving equivalent dipole method to identify sites of origin of cardiac electrical activation.
    Armoundas AA; Feldman AB; Mukkamala R; He B; Mullen TJ; Belk PA; Lee YZ; Cohen RJ
    IEEE Trans Biomed Eng; 2003 Dec; 50(12):1360-70. PubMed ID: 14656065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filament behavior in a computational model of ventricular fibrillation in the canine heart.
    Clayton RH; Holden AV
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):28-34. PubMed ID: 14723491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined phase singularity and wavefront analysis for optical maps of ventricular fibrillation.
    Rogers JM
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):56-65. PubMed ID: 14723494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can local ventricular fibrillation interval predict ventricular refractory period in human hearts?
    Wang L; Feng G
    Med Hypotheses; 2004; 63(3):446-8. PubMed ID: 15288365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of the site of origin of reentrant arrhythmia from body surface potential maps: a model study.
    Liu C; Li G; He B
    Phys Med Biol; 2005 Apr; 50(7):1421-32. PubMed ID: 15798333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theoretical model of the high-frequency arrhythmogenic depolarization signal following myocardial infarction.
    Kapela A; Bezerianos A
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1915-22. PubMed ID: 15536893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Building maps of local apparent conductivity of the epicardium with a 2-D electrophysiological model of the heart.
    Moreau-Villéger V; Delingette H; Sermesant M; Ashikaga H; McVeigh E; Ayache N
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1457-66. PubMed ID: 16916080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A time-dependent adaptive remeshing for electrical waves of the heart.
    Belhamadia Y
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):443-52. PubMed ID: 18269979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of myocardial activation during ventricular fibrillation after myocardial infarction: evidence for sustained high-frequency sources.
    Thomas SP; Thiagalingam A; Wallace E; Kovoor P; Ross DL
    Circulation; 2005 Jul; 112(2):157-63. PubMed ID: 15998683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the location of myocardial infarction on the spectral characteristics of ventricular fibrillation.
    Sánchez-Muñoz JJ; Rojo-Alvarez JL; García-Alberola A; Everss E; Requena-Carrión J; Ortiz M; Alonso-Atienza F; Valdés-Chavarri M
    Pacing Clin Electrophysiol; 2008 Jun; 31(6):660-5. PubMed ID: 18507537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of late potentials and arrhythmias by use of a three-dimensional heart model: casuality of peri-infarctional slow conduction in ventricular fibrillation.
    Yamaki M; Kubota I; Tomoike H
    J Electrocardiol; 1999 Apr; 32(2):115-21. PubMed ID: 10338030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applicability of the single equivalent moving dipole model in an infinite homogeneous medium to identify cardiac electrical sources: a computer simulation study in a realistic anatomic geometry torso model.
    Fukuoka Y; Oostendorp TF; Sherman DA; Armoundas AA
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2436-44. PubMed ID: 17153200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer modeling of ventricular rhythm during atrial fibrillation and ventricular pacing.
    Lian J; Müssig D; Lang V
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1512-20. PubMed ID: 16916085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive localization of the site of origin of paced cardiac activation in human by means of a 3-D heart model.
    Li G; Zhang X; Lian J; He B
    IEEE Trans Biomed Eng; 2003 Sep; 50(9):1117-20. PubMed ID: 12943279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of ST segment changes during subendocardial ischemia using a realistic 3-D cardiac geometry.
    MacLachlan MC; Sundnes J; Lines GT
    IEEE Trans Biomed Eng; 2005 May; 52(5):799-807. PubMed ID: 15887529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the location and extent of myocardial infarction using heart vector analysis.
    Ghaffari A; Atarod M; Ghasemi M
    Cardiovasc Eng; 2009 Mar; 9(1):6-10. PubMed ID: 19263222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model.
    Xia L; Huo M; Wei Q; Liu F; Crozier S
    Phys Med Biol; 2005 Apr; 50(8):1901-17. PubMed ID: 15815103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmural mapping of myocardial refractoriness and endocardial dispersion of repolarization in an ovine model of chronic myocardial infarction.
    Pouliopoulos J; Thiagalingam A; Eipper VE; Campbell C; Ross DL; Kovoor P
    Pacing Clin Electrophysiol; 2009 Jul; 32(7):851-61. PubMed ID: 19572859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.