BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 16817642)

  • 1. Possible role of ependymal proliferation in improving experimental allergic encephalomyelitis in Lewis rats.
    Mohamed A; Yunus M; Hamadain E; Benghuzzi H
    Biomed Sci Instrum; 2006; 42():405-9. PubMed ID: 16817642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of cervical lymph nodes in autoimmune encephalomyelitis in the Lewis rat.
    Phillips MJ; Needham M; Weller RO
    J Pathol; 1997 Aug; 182(4):457-64. PubMed ID: 9306968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of digital technology to asses the severity of the Experimental Allergic Encephalomyelitis (EAE) spinal cord lesion.
    Mohamed A; Tarhuni H; Dufan T; Benghuzzi H; Tucci M
    Biomed Sci Instrum; 2004; 40():419-23. PubMed ID: 15133994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute neuroinflammation in Lewis rats - a model for acute multiple sclerosis relapses.
    Schneider C; Schuetz G; Zollner TM
    J Neuroimmunol; 2009 Aug; 213(1-2):84-90. PubMed ID: 19560215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Experimental allergic encephalomyelitis as an animal model for multiple sclerosis].
    Lukinović-Skudar V; Taradi SK; Andreis I; Zupancić V; Taradi M
    Lijec Vjesn; 2001; 123(3-4):81-8. PubMed ID: 11488222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower motor neuron loss in multiple sclerosis and experimental autoimmune encephalomyelitis.
    Vogt J; Paul F; Aktas O; Müller-Wielsch K; Dörr J; Dörr S; Bharathi BS; Glumm R; Schmitz C; Steinbusch H; Raine CS; Tsokos M; Nitsch R; Zipp F
    Ann Neurol; 2009 Sep; 66(3):310-22. PubMed ID: 19798635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat.
    Mothe AJ; Tator CH
    Neuroscience; 2005; 131(1):177-87. PubMed ID: 15680701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exacerbation of protracted-relapsing experimental allergic encephalomyelitis in DA rats by gluten-free diet.
    Di Marco R; Mangano K; Quattrocchi C; Amato F; Nicoletti F; Buschard K
    APMIS; 2004 Oct; 112(10):651-5. PubMed ID: 15601316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD4 microglial expression correlates with spontaneous clinical improvement in the acute Lewis rat EAE model.
    Almolda B; Costa M; Montoya M; González B; Castellano B
    J Neuroimmunol; 2009 Apr; 209(1-2):65-80. PubMed ID: 19246105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathological findings in rats with experimental allergic encephalomyelitis.
    Dong M; Liu R; Guo L; Li C; Tan G
    APMIS; 2008 Nov; 116(11):972-84. PubMed ID: 19132994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amelioration of acute and relapsing stages of the experimental allergic encephalomyelitis by cobra toxins.
    Mohamed A; Reid PF; Raymond L; Dufan T
    Biomed Sci Instrum; 2006; 42():399-404. PubMed ID: 16817641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A morphologic comparison of three experimental models of experimental allergic encephalomyelitis with multiple sclerosis.
    Shaw CM; Alvord EC
    Prog Clin Biol Res; 1984; 146():61-6. PubMed ID: 6201924
    [No Abstract]   [Full Text] [Related]  

  • 13. The innate immune response to adjuvants dictates the adaptive immune response to autoantigens.
    Staykova MA; Liñares D; Fordham SA; Paridaen JT; Willenborg DO
    J Neuropathol Exp Neurol; 2008 Jun; 67(6):543-54. PubMed ID: 18520773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Susceptibility to experimental allergic encephalomyelitis in animal models of autoimmunity.
    Lublin FD
    Curr Opin Neurol Neurosurg; 1992 Apr; 5(2):182-7. PubMed ID: 1377972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Multiple Sclerosis candidate gene expression kinetics in rat experimental autoimmune encephalomyelitis.
    Thessen Hedreul M; Gillett A; Olsson T; Jagodic M; Harris RA
    J Neuroimmunol; 2009 May; 210(1-2):30-9. PubMed ID: 19269041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD8+ T cells in inflammatory demyelinating disease.
    Weiss HA; Millward JM; Owens T
    J Neuroimmunol; 2007 Nov; 191(1-2):79-85. PubMed ID: 17920696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The presence of GM-CSF and IL-4 interferes with effect of TGF-beta1 on antigen presenting cells in patients with multiple sclerosis and in rats with experimental autoimmune encephalomyelitis.
    Xiao BG; Zhu WH; Lu CZ
    Cell Immunol; 2007 Sep; 249(1):30-6. PubMed ID: 18061154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunomodulating effects of extracorporeal photochemotherapy in rat experimental allergic encephalomyelitis.
    Cavaletti G; Perseghin P; Buscemi F; Dassi M; Oggioni N; Sala F; Lolli F; Liuzzi GM; Riccio P; Frattola L; Tredici G
    Int J Tissue React; 2001; 23(1):21-31. PubMed ID: 11392060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new EAE model of brain demyelination induced by intracerebroventricular pertussis toxin.
    Zhao CB; Coons SW; Cui M; Shi FD; Vollmer TL; Ma CY; Kuniyoshi SM; Shi J
    Biochem Biophys Res Commun; 2008 May; 370(1):16-21. PubMed ID: 18339308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased expression of VEGF-A in rat experimental autoimmune encephalomyelitis and in cerebrospinal fluid mononuclear cells from patients with multiple sclerosis.
    Tham E; Gielen AW; Khademi M; Martin C; Piehl F
    Scand J Immunol; 2006 Dec; 64(6):609-22. PubMed ID: 17083617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.