BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 16818216)

  • 1. Recreating an artificial biological pacemaker: insights from a theoretical model.
    Viswanathan PC; Coles JA; Sharma V; Sigg DC
    Heart Rhythm; 2006 Jul; 3(7):824-31. PubMed ID: 16818216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of HCN-encoded pacemaker current silences bioartificial pacemakers.
    Lieu DK; Chan YC; Lau CP; Tse HF; Siu CW; Li RA
    Heart Rhythm; 2008 Sep; 5(9):1310-7. PubMed ID: 18693074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic role of I(f) revealed by induction of ventricular automaticity by somatic gene transfer of gating-engineered pacemaker (HCN) channels.
    Xue T; Siu CW; Lieu DK; Lau CP; Tse HF; Li RA
    Circulation; 2007 Apr; 115(14):1839-50. PubMed ID: 17389267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro characterization of HCN channel kinetics and frequency dependence in myocytes predicts biological pacemaker functionality.
    Zhao X; Bucchi A; Oren RV; Kryukova Y; Dun W; Clancy CE; Robinson RB
    J Physiol; 2009 Apr; 587(Pt 7):1513-25. PubMed ID: 19171659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic effects of inward rectifier (I) and pacemaker (I) currents on the induction of bioengineered cardiac automaticity.
    Chan YC; Siu CW; Lau YM; Lau CP; Li RA; Tse HF
    J Cardiovasc Electrophysiol; 2009 Sep; 20(9):1048-54. PubMed ID: 19460073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model.
    Tse HF; Xue T; Lau CP; Siu CW; Wang K; Zhang QY; Tomaselli GF; Akar FG; Li RA
    Circulation; 2006 Sep; 114(10):1000-11. PubMed ID: 16923751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tyrosine kinase inhibition differentially regulates heterologously expressed HCN channels.
    Yu HG; Lu Z; Pan Z; Cohen IS
    Pflugers Arch; 2004 Jan; 447(4):392-400. PubMed ID: 14634823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct evidence for calcium conductance of hyperpolarization-activated cyclic nucleotide-gated channels and human native If at physiological calcium concentrations.
    Michels G; Brandt MC; Zagidullin N; Khan IF; Larbig R; van Aaken S; Wippermann J; Hoppe UC
    Cardiovasc Res; 2008 Jun; 78(3):466-75. PubMed ID: 18252758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inward rectifier-funny current balance and spontaneous automaticity: cautionary notes for biologic pacemaker development.
    Nattel S
    Heart Rhythm; 2008 Sep; 5(9):1318-9. PubMed ID: 18774109
    [No Abstract]   [Full Text] [Related]  

  • 10. Hyperpolarization-activated cyclic nucleotide-gated channel gene: the most possible therapeutic applications in the field of cardiac biological pacemakers.
    Zhou YF; Yang XJ; Li HX
    Med Hypotheses; 2007; 69(3):541-4. PubMed ID: 17367954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperpolarization-activated cyclic nucleotide-gated channels and T-type calcium channels confer automaticity of embryonic stem cell-derived cardiomyocytes.
    Yanagi K; Takano M; Narazaki G; Uosaki H; Hoshino T; Ishii T; Misaki T; Yamashita JK
    Stem Cells; 2007 Nov; 25(11):2712-9. PubMed ID: 17656646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small functional
    Hassinen M; Haverinen J; Vornanen M
    Am J Physiol Regul Integr Comp Physiol; 2017 Dec; 313(6):R711-R722. PubMed ID: 28855177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. I K1 and I f in ventricular myocytes isolated from control and hypertrophied rat hearts.
    Fernández-Velasco M; Ruiz-Hurtado G; Delgado C
    Pflugers Arch; 2006 May; 452(2):146-54. PubMed ID: 16395601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automaticity and conduction properties of bio-artificial pacemakers assessed in an in vitro monolayer model of neonatal rat ventricular myocytes.
    Chan YC; Tse HF; Siu CW; Wang K; Li RA
    Europace; 2010 Aug; 12(8):1178-87. PubMed ID: 20472688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of HCN channels in ventricular repolarization.
    Fenske S; Krause S; Biel M; Wahl-Schott C
    Trends Cardiovasc Med; 2011 Nov; 21(8):216-20. PubMed ID: 22902068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-equilibrium behavior of HCN channels: insights into the role of HCN channels in native and engineered pacemakers.
    Azene EM; Xue T; Marbán E; Tomaselli GF; Li RA
    Cardiovasc Res; 2005 Aug; 67(2):263-73. PubMed ID: 16005302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological approaches to generating cardiac biopacemaker for bradycardia.
    Xiao YF; Sigg DC
    Sheng Li Xue Bao; 2007 Oct; 59(5):562-70. PubMed ID: 17940695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ventricular HCN channels decrease the repolarization reserve in the hypertrophic heart.
    Hofmann F; Fabritz L; Stieber J; Schmitt J; Kirchhof P; Ludwig A; Herrmann S
    Cardiovasc Res; 2012 Aug; 95(3):317-26. PubMed ID: 22652004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiology and pharmacology of the cardiac pacemaker ("funny") current.
    Baruscotti M; Bucchi A; Difrancesco D
    Pharmacol Ther; 2005 Jul; 107(1):59-79. PubMed ID: 15963351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous expression of potassium currents and pacemaker currents potentially regulates arrhythmogenesis of pulmonary vein cardiomyocytes.
    Chen YC; Pan NH; Cheng CC; Higa S; Chen YJ; Chen SA
    J Cardiovasc Electrophysiol; 2009 Sep; 20(9):1039-45. PubMed ID: 19473300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.