BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 16818608)

  • 1. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress.
    Nonaka G; Blankschien M; Herman C; Gross CA; Rhodius VA
    Genes Dev; 2006 Jul; 20(13):1776-89. PubMed ID: 16818608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription of the ibpB heat-shock gene is under control of sigma(32)- and sigma(54)-promoters, a third regulon of heat-shock response.
    Kuczyńska-Wisńik D; Laskowska E; Taylor A
    Biochem Biophys Res Commun; 2001 Jun; 284(1):57-64. PubMed ID: 11374870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperosmotic shock induces the sigma32 and sigmaE stress regulons of Escherichia coli.
    Bianchi AA; Baneyx F
    Mol Microbiol; 1999 Dec; 34(5):1029-38. PubMed ID: 10594827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli.
    Tomoyasu T; Ogura T; Tatsuta T; Bukau B
    Mol Microbiol; 1998 Nov; 30(3):567-81. PubMed ID: 9822822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chaperone network controls the heat shock response in E. coli.
    Guisbert E; Herman C; Lu CZ; Gross CA
    Genes Dev; 2004 Nov; 18(22):2812-21. PubMed ID: 15545634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Caulobacter heat shock sigma factor gene rpoH is positively autoregulated from a sigma32-dependent promoter.
    Wu J; Newton A
    J Bacteriol; 1997 Jan; 179(2):514-21. PubMed ID: 8990305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus.
    Wu J; Newton A
    J Bacteriol; 1996 Apr; 178(7):2094-101. PubMed ID: 8606189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Genetic regulation of the heat-shock response in Escherichia coli].
    Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC
    Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the heat-shock response.
    Yura T; Nakahigashi K
    Curr Opin Microbiol; 1999 Apr; 2(2):153-8. PubMed ID: 10322172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of Escherichia coli heat shock transcription factor sigma 32 reveals similarities with sigma 70 in recognition of the -35 promoter element and differences in promoter DNA melting and -10 recognition.
    Kourennaia OV; Tsujikawa L; Dehaseth PL
    J Bacteriol; 2005 Oct; 187(19):6762-9. PubMed ID: 16166539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo.
    Tatsuta T; Tomoyasu T; Bukau B; Kitagawa M; Mori H; Karata K; Ogura T
    Mol Microbiol; 1998 Nov; 30(3):583-93. PubMed ID: 9822823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global transcriptional and proteomic analysis of the Sig1 heat shock regulon of Deinococcus radiodurans.
    Schmid AK; Howell HA; Battista JR; Peterson SN; Lidstrom ME
    J Bacteriol; 2005 May; 187(10):3339-51. PubMed ID: 15866918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a turnover element in region 2.1 of Escherichia coli sigma32 by a bacterial one-hybrid approach.
    Obrist M; Narberhaus F
    J Bacteriol; 2005 Jun; 187(11):3807-13. PubMed ID: 15901705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity.
    Horikoshi M; Yura T; Tsuchimoto S; Fukumori Y; Kanemori M
    J Bacteriol; 2004 Nov; 186(22):7474-80. PubMed ID: 15516558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of a heat shock sigma32 homolog in Caulobacter crescentus.
    Reisenauer A; Mohr CD; Shapiro L
    J Bacteriol; 1996 Apr; 178(7):1919-27. PubMed ID: 8606166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissection of recognition determinants of Escherichia coli sigma32 suggests a composite -10 region with an 'extended -10' motif and a core -10 element.
    Koo BM; Rhodius VA; Campbell EA; Gross CA
    Mol Microbiol; 2009 May; 72(4):815-29. PubMed ID: 19400791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extensive functional overlap between sigma factors in Escherichia coli.
    Wade JT; Castro Roa D; Grainger DC; Hurd D; Busby SJ; Struhl K; Nudler E
    Nat Struct Mol Biol; 2006 Sep; 13(9):806-14. PubMed ID: 16892065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock.
    Tsui HC; Feng G; Winkler ME
    J Bacteriol; 1996 Oct; 178(19):5719-31. PubMed ID: 8824618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32.
    Gamer J; Multhaup G; Tomoyasu T; McCarty JS; Rüdiger S; Schönfeld HJ; Schirra C; Bujard H; Bukau B
    EMBO J; 1996 Feb; 15(3):607-17. PubMed ID: 8599944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli.
    Dartigalongue C; Raina S
    EMBO J; 1998 Jul; 17(14):3968-80. PubMed ID: 9670013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.