These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 16818608)

  • 21. The heat shock response of Escherichia coli.
    Arsène F; Tomoyasu T; Bukau B
    Int J Food Microbiol; 2000 Apr; 55(1-3):3-9. PubMed ID: 10791710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation and conservation of the heat-shock transcription factor sigma32.
    Yura T
    Genes Cells; 1996 Mar; 1(3):277-84. PubMed ID: 9133661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The global transcriptional response of Escherichia coli to induced sigma 32 protein involves sigma 32 regulon activation followed by inactivation and degradation of sigma 32 in vivo.
    Zhao K; Liu M; Burgess RR
    J Biol Chem; 2005 May; 280(18):17758-68. PubMed ID: 15757896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent insights into the general stress response regulatory network in Escherichia coli.
    Hengge-Aronis R
    J Mol Microbiol Biotechnol; 2002 May; 4(3):341-6. PubMed ID: 11931567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of Escherichia coli hchA, a stress-inducible gene encoding molecular chaperone Hsp31.
    Mujacic M; Baneyx F
    Mol Microbiol; 2006 Jun; 60(6):1576-89. PubMed ID: 16796689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substitution of a highly conserved histidine in the Escherichia coli heat shock transcription factor, sigma32, affects promoter utilization in vitro and leads to overexpression of the biofilm-associated flu protein in vivo.
    Kourennaia OV; Dehaseth PL
    J Bacteriol; 2007 Dec; 189(23):8430-6. PubMed ID: 17921304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptation of Escherichi coli to elevated temperatures involves a change in stability of heat shock gene transcripts.
    Shenhar Y; Rasouly A; Biran D; Ron EZ
    Environ Microbiol; 2009 Dec; 11(12):2989-97. PubMed ID: 19624711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response.
    Guisbert E; Yura T; Rhodius VA; Gross CA
    Microbiol Mol Biol Rev; 2008 Sep; 72(3):545-54. PubMed ID: 18772288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heat shock regulation of sigmaS turnover: a role for DnaK and relationship between stress responses mediated by sigmaS and sigma32 in Escherichia coli.
    Muffler A; Barth M; Marschall C; Hengge-Aronis R
    J Bacteriol; 1997 Jan; 179(2):445-52. PubMed ID: 8990297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones.
    Rodriguez F; Arsène-Ploetze F; Rist W; Rüdiger S; Schneider-Mergener J; Mayer MP; Bukau B
    Mol Cell; 2008 Nov; 32(3):347-58. PubMed ID: 18995833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of sigma32 mutants defective in chaperone-mediated feedback control reveals unexpected complexity of the heat shock response.
    Yura T; Guisbert E; Poritz M; Lu CZ; Campbell E; Gross CA
    Proc Natl Acad Sci U S A; 2007 Nov; 104(45):17638-43. PubMed ID: 17968012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Novel SRP Recognition Sequence in the Homeostatic Control Region of Heat Shock Transcription Factor σ32.
    Miyazaki R; Yura T; Suzuki T; Dohmae N; Mori H; Akiyama Y
    Sci Rep; 2016 Apr; 6():24147. PubMed ID: 27052372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The RpoH-mediated stress response in Neisseria gonorrhoeae is regulated at the level of activity.
    Laskos L; Ryan CS; Fyfe JA; Davies JK
    J Bacteriol; 2004 Dec; 186(24):8443-52. PubMed ID: 15576794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Heat shock inhibits the induced expression of the SOS genes and SoxRS regulons in Escherichia coli].
    Vasil'eva SV; Makhova EV
    Genetika; 2003 Aug; 39(8):1033-8. PubMed ID: 14515458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH.
    Engels S; Schweitzer JE; Ludwig C; Bott M; Schaffer S
    Mol Microbiol; 2004 Apr; 52(1):285-302. PubMed ID: 15049827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the sigma(B) regulon in Staphylococcus aureus.
    Gertz S; Engelmann S; Schmid R; Ziebandt AK; Tischer K; Scharf C; Hacker J; Hecker M
    J Bacteriol; 2000 Dec; 182(24):6983-91. PubMed ID: 11092859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic roles of a Rhodobacter sphaeroides member of the sigma32 family.
    Karls RK; Brooks J; Rossmeissl P; Luedke J; Donohue TJ
    J Bacteriol; 1998 Jan; 180(1):10-9. PubMed ID: 9422586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon.
    Fredriksson A; Ballesteros M; Dukan S; Nyström T
    J Bacteriol; 2005 Jun; 187(12):4207-13. PubMed ID: 15937182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An online monitoring system based on a synthetic sigma32-dependent tandem promoter for visualization of insoluble proteins in the cytoplasm of Escherichia coli.
    Kraft M; Knüpfer U; Wenderoth R; Pietschmann P; Hock B; Horn U
    Appl Microbiol Biotechnol; 2007 May; 75(2):397-406. PubMed ID: 17221192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.