These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16818741)

  • 1. Divergent generation of heterogeneous memory CD4 T cells.
    Moulton VR; Bushar ND; Leeser DB; Patke DS; Farber DL
    J Immunol; 2006 Jul; 177(2):869-76. PubMed ID: 16818741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway.
    Ndejembi MP; Teijaro JR; Patke DS; Bingaman AW; Chandok MR; Azimzadeh A; Nadler SG; Farber DL
    J Immunol; 2006 Dec; 177(11):7698-706. PubMed ID: 17114440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of memory CD4 T cell function and survival potential by altering the strength of the recall stimulus.
    Patke DS; Farber DL
    J Immunol; 2005 May; 174(9):5433-43. PubMed ID: 15843542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotype and homing of CD4 tumor-specific T cells is modulated by tumor bulk.
    Benigni F; Zimmermann VS; Hugues S; Caserta S; Basso V; Rivino L; Ingulli E; Malherbe L; Glaichenhaus N; Mondino A
    J Immunol; 2005 Jul; 175(2):739-48. PubMed ID: 16002669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneity of the memory CD4 T cell response: persisting effectors and resting memory T cells.
    Ahmadzadeh M; Hussain SF; Farber DL
    J Immunol; 2001 Jan; 166(2):926-35. PubMed ID: 11145669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TLR2 engagement on dendritic cells promotes high frequency effector and memory CD4 T cell responses.
    Chandran SS; Verhoeven D; Teijaro JR; Fenton MJ; Farber DL
    J Immunol; 2009 Dec; 183(12):7832-41. PubMed ID: 19933854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-CD3 priming generates heterogeneous antigen-specific memory CD4 T cells.
    Patke DS; Ahmadzadeh M; Bingaman AW; Farber DL
    Clin Immunol; 2005 Nov; 117(2):125-32. PubMed ID: 16143567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early effector cells survive the contraction phase in malaria infection and generate both central and effector memory T cells.
    Opata MM; Carpio VH; Ibitokou SA; Dillon BE; Obiero JM; Stephens R
    J Immunol; 2015 Jun; 194(11):5346-54. PubMed ID: 25911759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Priming by microbial antigens from the intestinal flora determines the ability of CD4+ T cells to rapidly secrete IL-4 in BALB/c mice infected with Leishmania major.
    Julia V; McSorley SS; Malherbe L; Breittmayer JP; Girard-Pipau F; Beck A; Glaichenhaus N
    J Immunol; 2000 Nov; 165(10):5637-45. PubMed ID: 11067920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential requirements for OX40 signals on generation of effector and central memory CD4+ T cells.
    Soroosh P; Ine S; Sugamura K; Ishii N
    J Immunol; 2007 Oct; 179(8):5014-23. PubMed ID: 17911586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effector CD4 T cells are biochemically distinct from the memory subset: evidence for long-term persistence of effectors in vivo.
    Ahmadzadeh M; Hussain SF; Farber DL
    J Immunol; 1999 Sep; 163(6):3053-63. PubMed ID: 10477569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein vaccines induce uncommitted IL-2-secreting human and mouse CD4 T cells, whereas infections induce more IFN-gamma-secreting cells.
    Divekar AA; Zaiss DM; Lee FE; Liu D; Topham DJ; Sijts AJ; Mosmann TR
    J Immunol; 2006 Feb; 176(3):1465-73. PubMed ID: 16424174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective bystander proliferation of memory CD4+ and CD8+ T cells upon NK T or T cell activation.
    Eberl G; Brawand P; MacDonald HR
    J Immunol; 2000 Oct; 165(8):4305-11. PubMed ID: 11035065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alloreactive memory T cells are responsible for the persistence of graft-versus-host disease.
    Zhang Y; Joe G; Hexner E; Zhu J; Emerson SG
    J Immunol; 2005 Mar; 174(5):3051-8. PubMed ID: 15728519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy.
    Cannons JL; Lau P; Ghumman B; DeBenedette MA; Yagita H; Okumura K; Watts TH
    J Immunol; 2001 Aug; 167(3):1313-24. PubMed ID: 11466348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characteristics and survival requirements of memory CD4+ T lymphocytes in vivo.
    London CA; Perez VL; Abbas AK
    J Immunol; 1999 Jan; 162(2):766-73. PubMed ID: 9916697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biochemical signature for rapid recall of memory CD4 T cells.
    Chandok MR; Okoye FI; Ndejembi MP; Farber DL
    J Immunol; 2007 Sep; 179(6):3689-98. PubMed ID: 17785805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD4 T cell-dependent CD8 T cell maturation.
    Khanolkar A; Fuller MJ; Zajac AJ
    J Immunol; 2004 Mar; 172(5):2834-44. PubMed ID: 14978084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restricted aeroallergen access to airway mucosal dendritic cells in vivo limits allergen-specific CD4+ T cell proliferation during the induction of inhalation tolerance.
    Fear VS; Burchell JT; Lai SP; Wikstrom ME; Blank F; von Garnier C; Turner DJ; Sly PD; Holt PG; Strickland DS; Stumbles PA
    J Immunol; 2011 Nov; 187(9):4561-70. PubMed ID: 21930961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic differentiation of activated human peripheral blood CD8+ and CD4+ effector memory T cells.
    Schwendemann J; Choi C; Schirrmacher V; Beckhove P
    J Immunol; 2005 Aug; 175(3):1433-9. PubMed ID: 16034079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.