These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 16819304)

  • 1. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny.
    Lee SM; Kang K; Chung H; Yoo SH; Xu XM; Lee SB; Cheong JJ; Daniell H; Kim M
    Mol Cells; 2006 Jun; 21(3):401-10. PubMed ID: 16819304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable plastid transformation of rice, a monocot cereal crop.
    Wang Y; Wei Z; Xing S
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2376-2379. PubMed ID: 29966651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants.
    Khan MS; Maliga P
    Nat Biotechnol; 1999 Sep; 17(9):910-5. PubMed ID: 10471936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic transformation of the sugar beet plastome.
    De Marchis F; Wang Y; Stevanato P; Arcioni S; Bellucci M
    Transgenic Res; 2009 Feb; 18(1):17-30. PubMed ID: 18551377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit.
    Ruf S; Hermann M; Berger IJ; Carrer H; Bock R
    Nat Biotechnol; 2001 Sep; 19(9):870-5. PubMed ID: 11533648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration and Expression of gfp in the plastid of Medicago sativa L.
    Xing S; Wei Z; Wang Y; Liu Y; Lin C
    Methods Mol Biol; 2014; 1132():375-87. PubMed ID: 24599868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic plastids in basic research and plant biotechnology.
    Bock R
    J Mol Biol; 2001 Sep; 312(3):425-38. PubMed ID: 11563907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes.
    Kumar S; Dhingra A; Daniell H
    Plant Mol Biol; 2004 Sep; 56(2):203-16. PubMed ID: 15604738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and perspectives in commercializing plastid transformation technology.
    Ahmad N; Michoux F; Lössl AG; Nixon PJ
    J Exp Bot; 2016 Nov; 67(21):5945-5960. PubMed ID: 27697788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic engineering of the chloroplast: novel tools and new applications.
    Bock R
    Curr Opin Biotechnol; 2014 Apr; 26():7-13. PubMed ID: 24679252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the transgene containment level provided by chloroplast transformation.
    Ruf S; Karcher D; Bock R
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):6998-7002. PubMed ID: 17420459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids.
    Kanamoto H; Yamashita A; Asao H; Okumura S; Takase H; Hattori M; Yokota A; Tomizawa K
    Transgenic Res; 2006 Apr; 15(2):205-17. PubMed ID: 16604461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable plastid transformation in lettuce (Lactuca sativa L.).
    Lelivelt CLC; McCabe MS; Newell CA; deSnoo CB; van Dun KMP; Birch-Machin I; Gray JC; Mills KHG; Nugent JM
    Plant Mol Biol; 2005 Aug; 58(6):763-774. PubMed ID: 16240172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient generation of marker-free transgenic rice plants using an improved transposon-mediated transgene reintegration strategy.
    Gao X; Zhou J; Li J; Zou X; Zhao J; Li Q; Xia R; Yang R; Wang D; Zuo Z; Tu J; Tao Y; Chen X; Xie Q; Zhu Z; Qu S
    Plant Physiol; 2015 Jan; 167(1):11-24. PubMed ID: 25371551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ and maize ferredoxin III proteins.
    Primavesi LF; Wu H; Mudd EA; Day A; Jones HD
    Transgenic Res; 2008 Aug; 17(4):529-43. PubMed ID: 17710559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable transformation of petunia plastids.
    Zubkot MK; Zubkot EI; van Zuilen K; Meyer P; Day A
    Transgenic Res; 2004 Dec; 13(6):523-30. PubMed ID: 15672833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances of selectable marker genes in plastid genetic engineering.
    He Y; Luo A; Mu LS; Chen Q; Zhang Y; Yeh KW; Tian ZH
    Yi Chuan; 2017 Sep; 39(9):810-827. PubMed ID: 28936979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dicistronic expression of the green fluorescent protein and antibiotic resistance genes in the plastid for selection and tracking of plastid-transformed cells in tobacco.
    Jeong SW; Jeong WJ; Woo JW; Choi DW; Park YI; Liu JR
    Plant Cell Rep; 2004 May; 22(10):747-51. PubMed ID: 14735311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breakthrough in chloroplast genetic engineering of agronomically important crops.
    Daniell H; Kumar S; Dufourmantel N
    Trends Biotechnol; 2005 May; 23(5):238-45. PubMed ID: 15866001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of fertile transplastomic soybean.
    Dufourmantel N; Pelissier B; Garçon F; Peltier G; Ferullo JM; Tissot G
    Plant Mol Biol; 2004 Jul; 55(4):479-89. PubMed ID: 15604694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.