BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 16819682)

  • 1. Sequential changes in vessel formation and micro-vascular function during bone repair.
    Hansen-Algenstaedt N; Joscheck C; Wolfram L; Schaefer C; Müller I; Böttcher A; Deuretzbacher G; Wiesner L; Leunig M; Algenstaedt P; Rüther W
    Acta Orthop; 2006 Jun; 77(3):429-39. PubMed ID: 16819682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femur window--a new approach to microcirculation of living bone in situ.
    Hansen-Algenstaedt N; Schaefer C; Wolfram L; Joscheck C; Schroeder M; Algenstaedt P; Rüther W
    J Orthop Res; 2005 Sep; 23(5):1073-82. PubMed ID: 15890486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term observation reveals time-course-dependent characteristics of tumour vascularisation.
    Hansen-Algenstaedt N; Joscheck C; Schaefer C; Lamszus K; Wolfram L; Biermann T; Algenstaedt P; Brockmann MA; Heintz C; Fiedler W; Rüther W
    Eur J Cancer; 2005 May; 41(7):1073-85. PubMed ID: 15862758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of microvascular remodelling during tumor growth in bone.
    Fuhrhop I; Schroeder M; Rafnsdóttir SL; Viezens L; Rüther W; Hansen-Algenstaedt N; Schaefer C
    J Orthop Res; 2010 Jan; 28(1):27-31. PubMed ID: 19642113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiogenesis and growth of isografted bone: quantitative in vivo assay in nude mice.
    Leunig M; Yuan F; Berk DA; Gerweck LE; Jain RK
    Lab Invest; 1994 Aug; 71(2):300-7. PubMed ID: 7521447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surgical angiogenesis: a new approach to maintain osseous viability in xenotransplantation.
    Chung YG; Bishop AT; Giessler GA; Suzuki O; Platt JL; Pelzer M; Friedrich PF; Kremer T
    Xenotransplantation; 2010; 17(1):38-47. PubMed ID: 20149187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of angiogenesis and microcirculation of high-grade glioma: an intravital multifluorescence microscopic approach in the athymic nude mouse.
    Vajkoczy P; Schilling L; Ullrich A; Schmiedek P; Menger MD
    J Cereb Blood Flow Metab; 1998 May; 18(5):510-20. PubMed ID: 9591843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid perfusion and network remodeling in a microvascular construct after implantation.
    Shepherd BR; Chen HY; Smith CM; Gruionu G; Williams SK; Hoying JB
    Arterioscler Thromb Vasc Biol; 2004 May; 24(5):898-904. PubMed ID: 14988090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges.
    Santos MI; Reis RL
    Macromol Biosci; 2010 Jan; 10(1):12-27. PubMed ID: 19688722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel approach for studying microcirculation in bone defects by intravital fluorescence microscopy.
    Tavassol F; Kampmann A; Schumann P; Lindhorst D; Kokemüller H; Essig H; Meemken JH; Rücker M; Gellrich NC
    Tissue Eng Part C Methods; 2011 Dec; 17(12):1151-9. PubMed ID: 21740338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anatomy and histophysiology of the periosteum: quantification of the periosteal blood supply to the adjacent bone with 85Sr and gamma spectrometry.
    Chanavaz M
    J Oral Implantol; 1995; 21(3):214-9. PubMed ID: 8699515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise enhances angiogenesis during bone defect healing in mice.
    Holstein JH; Becker SC; Fiedler M; Scheuer C; Garcia P; Histing T; Klein M; Pohlemann T; Menger MD
    J Orthop Res; 2011 Jul; 29(7):1086-92. PubMed ID: 21259340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcirculation of secondary bone tumors in vivo: the impact of minor surgery at a distal site.
    Schaefer C; Fuhrhop I; Schroeder M; Viezens L; Otten J; Fiedler W; Rüther W; Hansen-Algenstaedt N
    J Orthop Res; 2010 Nov; 28(11):1515-21. PubMed ID: 20872590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects.
    Plachokova AS; van den Dolder J; Stoelinga PJ; Jansen JA
    Clin Oral Implants Res; 2007 Apr; 18(2):244-51. PubMed ID: 17348890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intravital microscopic studies of angiogenesis during bone defect healing in mice calvaria.
    Holstein JH; Becker SC; Fiedler M; Garcia P; Histing T; Klein M; Laschke MW; Corsten M; Pohlemann T; Menger MD
    Injury; 2011 Aug; 42(8):765-71. PubMed ID: 21156316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential role of pre-existing blood vessels for vascularization and mineralization of osteochondral grafts: an intravital microscopic study in mice.
    Rothenfluh DA; Demhartner TJ; Fraitzl CR; Cecchini MG; Ganz R; Leunig M
    Acta Orthop Scand; 2004 Jun; 75(3):359-65. PubMed ID: 15260432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term immunosuppression and surgical neoangiogenesis with host vessels maintains long-term viability of vascularized bone allografts.
    Pelzer M; Larsen M; Chung YG; Ohno T; Platt JL; Friedrich PF; Bishop AT
    J Orthop Res; 2007 Mar; 25(3):370-7. PubMed ID: 17106873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of polylactide-polyglycolide in a cortical defect: neoangiogenesis and blood supply in a bone chamber.
    Winet H; Hollinger JO; Stevanovic M
    J Orthop Res; 1995 Sep; 13(5):679-89. PubMed ID: 7472746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angiogenesis is enhanced by continuous traction in rabbit mandibular distraction osteogenesis.
    Zheng LW; Ma L; Cheung LK
    J Craniomaxillofac Surg; 2009 Oct; 37(7):405-11. PubMed ID: 19428266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.