These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 16819688)
1. Prediction of torsional failure in 22 cadaver femora with and without simulated subtrochanteric metastatic defects: a CT scan-based finite element analysis. Spruijt S; van der Linden JC; Dijkstra PD; Wiggers T; Oudkerk M; Snijders CJ; van Keulen F; Verhaar JA; Weinans H; Swierstra BA Acta Orthop; 2006 Jun; 77(3):474-81. PubMed ID: 16819688 [TBL] [Abstract][Full Text] [Related]
2. The assessment of the risk of fracture in femora with metastatic lesions: comparing case-specific finite element analyses with predictions by clinical experts. Derikx LC; van Aken JB; Janssen D; Snyers A; van der Linden YM; Verdonschot N; Tanck E J Bone Joint Surg Br; 2012 Aug; 94(8):1135-42. PubMed ID: 22844058 [TBL] [Abstract][Full Text] [Related]
3. Prediction of the pathological fracture risk during stance and fall-loading configurations for metastases in the proximal femur, using a computed tomography-based finite element method. Shinoda Y; Kobayashi H; Kaneko M; Ohashi S; Bessho M; Hayashi N; Oka H; Imanishi J; Sawada R; Ogura K; Tanaka S; Haga N; Kawano H J Orthop Sci; 2019 Nov; 24(6):1074-1080. PubMed ID: 31521453 [TBL] [Abstract][Full Text] [Related]
4. QCT-based finite element prediction of pathologic fractures in proximal femora with metastatic lesions. Benca E; Synek A; Amini M; Kainberger F; Hirtler L; Windhager R; Mayr W; Pahr DH Sci Rep; 2019 Jul; 9(1):10305. PubMed ID: 31311994 [TBL] [Abstract][Full Text] [Related]
5. Femoral recon nails for metastatic disease: indications, technique, and results. Ward WG; Spang J; Howe D; Gordan S Am J Orthop (Belle Mead NJ); 2000 Sep; 29(9 Suppl):34-42. PubMed ID: 11011778 [TBL] [Abstract][Full Text] [Related]
6. Density predicts the activity-dependent failure load of proximal femora with defects. Michaeli DA; Inoue K; Hayes WC; Hipp JA Skeletal Radiol; 1999 Feb; 28(2):90-5. PubMed ID: 10197454 [TBL] [Abstract][Full Text] [Related]
7. Predicting failure load of the femur with simulated osteolytic defects using noninvasive imaging technique in a simplified load case. Lee T Ann Biomed Eng; 2007 Apr; 35(4):642-50. PubMed ID: 17286207 [TBL] [Abstract][Full Text] [Related]
8. Predicting pathological fracture in femoral metastases using a clinical CT scan based algorithm: A case-control study. Janssen SJ; Paulino Pereira NR; Meijs TA; Bredella MA; Ferrone ML; van Dijk CN; Bramer JAM; Lozano-Calderón SA; Schwab JH J Orthop Sci; 2018 Mar; 23(2):394-402. PubMed ID: 29128112 [TBL] [Abstract][Full Text] [Related]
9. When and where do patients with bone metastases actually break their femurs? Sternheim A; Traub F; Trabelsi N; Dadia S; Gortzak Y; Snir N; Gorfine M; Yosibash Z Bone Joint J; 2020 May; 102-B(5):638-645. PubMed ID: 32349590 [TBL] [Abstract][Full Text] [Related]
10. CT-based Structural Rigidity Analysis Is More Accurate Than Mirels Scoring for Fracture Prediction in Metastatic Femoral Lesions. Damron TA; Nazarian A; Entezari V; Brown C; Grant W; Calderon N; Zurakowski D; Terek RM; Anderson ME; Cheng EY; Aboulafia AJ; Gebhardt MC; Snyder BD Clin Orthop Relat Res; 2016 Mar; 474(3):643-51. PubMed ID: 26169800 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical model of a high risk impending pathologic fracture of the femur: lesion creation based on clinically implemented scoring systems. Alexander GE; Gutierrez S; Nayak A; Palumbo BT; Cheong D; Letson GD; Santoni BG Clin Biomech (Bristol); 2013 Apr; 28(4):408-14. PubMed ID: 23597777 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of finite element analysis for prediction of the strength reduction due to metastatic lesions in the femoral neck. Cheal EJ; Hipp JA; Hayes WC J Biomech; 1993 Mar; 26(3):251-64. PubMed ID: 8468338 [TBL] [Abstract][Full Text] [Related]
13. Feasibility of a percutaneous technique for repairing proximal femora with simulated metastatic lesions. Kaneko TS; Skinner HB; Keyak JH Med Eng Phys; 2007 Jun; 29(5):594-601. PubMed ID: 16949854 [TBL] [Abstract][Full Text] [Related]
14. Cortical bone finite element models in the estimation of experimentally measured failure loads in the proximal femur. Koivumäki JE; Thevenot J; Pulkkinen P; Kuhn V; Link TM; Eckstein F; Jämsä T Bone; 2012 Oct; 51(4):737-40. PubMed ID: 22796418 [TBL] [Abstract][Full Text] [Related]
15. Feasibility of percutaneous cementoplasty combined with interventional internal fixation for impending pathologic fracture of the proximal femur. He C; Tian Q; Wu CG; Gu Y; Wang T; Li M J Vasc Interv Radiol; 2014 Jul; 25(7):1112-7. PubMed ID: 24801501 [TBL] [Abstract][Full Text] [Related]
16. Image-based anatomical reconstruction and pharmaco-mediated bone remodeling model applied to a femur with subtrochanteric fracture: A subject-specific finite element study. Bahia MT; Hecke MB; Mercuri EGF Med Eng Phys; 2019 Jul; 69():58-71. PubMed ID: 31171487 [TBL] [Abstract][Full Text] [Related]
17. Prediction of femoral fracture load using automated finite element modeling. Keyak JH; Rossi SA; Jones KA; Skinner HB J Biomech; 1998 Feb; 31(2):125-33. PubMed ID: 9593205 [TBL] [Abstract][Full Text] [Related]
18. Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Koivumäki JE; Thevenot J; Pulkkinen P; Kuhn V; Link TM; Eckstein F; Jämsä T Bone; 2012 Apr; 50(4):824-9. PubMed ID: 22306697 [TBL] [Abstract][Full Text] [Related]
19. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations? Schileo E; Balistreri L; Grassi L; Cristofolini L; Taddei F J Biomech; 2014 Nov; 47(14):3531-8. PubMed ID: 25261321 [TBL] [Abstract][Full Text] [Related]
20. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Keyak JH; Falkinstein Y Med Eng Phys; 2003 Nov; 25(9):781-7. PubMed ID: 14519351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]