BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16819733)

  • 1. De novo design, synthesis, and characterization of quinoproteins.
    Li WW; Hellwig P; Ritter M; Haehnel W
    Chemistry; 2006 Sep; 12(27):7236-45. PubMed ID: 16819733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific binding of quinones to proteins through thiol addition and addition-elimination reactions.
    Li WW; Heinze J; Haehnel W
    J Am Chem Soc; 2005 May; 127(17):6140-1. PubMed ID: 15853297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo design, synthesis, and characterization of a pore-forming small globular protein and its insertion into lipid bilayers.
    Lee S; Kiyota T; Kunitake T; Matsumoto E; Yamashita S; Anzai K; Sugihara G
    Biochemistry; 1997 Apr; 36(13):3782-91. PubMed ID: 9092807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of four helix bundle topology on heme binding and redox properties.
    Gibney BR; Rabanal F; Reddy KS; Dutton PL
    Biochemistry; 1998 Mar; 37(13):4635-43. PubMed ID: 9521784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of functionalized de novo designed 8-16 kDa model proteins towards metal ion-binding and esterase activity.
    Pernille Tofteng A; Hansen TH; Brask J; Nielsen J; Thulstrup PW; Jensen KJ
    Org Biomol Chem; 2007 Jul; 5(14):2225-33. PubMed ID: 17609753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox titration of all electron carriers of cytochrome c oxidase by Fourier transform infrared spectroscopy.
    Gorbikova EA; Vuorilehto K; Wikström M; Verkhovsky MI
    Biochemistry; 2006 May; 45(17):5641-9. PubMed ID: 16634645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalized de novo designed proteins: mechanism of proton coupling to oxidation/reduction in heme protein maquettes.
    Shifman JM; Moser CC; Kalsbeck WA; Bocian DF; Dutton PL
    Biochemistry; 1998 Nov; 37(47):16815-27. PubMed ID: 9843452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monolayer assemblies of a de novo designed 4-alpha-helix bundle carboprotein and its sulfur anchor fragment on Au(111) surfaces addressed by voltammetry and in situ scanning tunneling microscopy.
    Brask J; Wackerbarth H; Jensen KJ; Zhang J; Chorkendorff I; Ulstrup J
    J Am Chem Soc; 2003 Jan; 125(1):94-104. PubMed ID: 12515510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous spectroscopy and redox properties of carboxylate-bound titanium.
    Uppal R; Incarvito CD; Lakshmi KV; Valentine AM
    Inorg Chem; 2006 Feb; 45(4):1795-804. PubMed ID: 16471996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and synthesis of de novo cytochromes c.
    Ishida M; Dohmae N; Shiro Y; Oku T; Iizuka T; Isogai Y
    Biochemistry; 2004 Aug; 43(30):9823-33. PubMed ID: 15274636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical and spectroscopic investigations of immobilized de novo designed heme proteins on metal electrodes.
    Albrecht T; Li W; Ulstrup J; Haehnel W; Hildebrandt P
    Chemphyschem; 2005 May; 6(5):961-70. PubMed ID: 15884083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A designed cavity in the hydrophobic core of a four-alpha-helix bundle improves volatile anesthetic binding affinity.
    Johansson JS; Gibney BR; Rabanal F; Reddy KS; Dutton PL
    Biochemistry; 1998 Feb; 37(5):1421-9. PubMed ID: 9477971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of peptide design in four-, five-, and six-helix bundle template assembled synthetic protein molecules.
    Seo ES; Sherman JC
    Biopolymers; 2007; 88(5):774-9. PubMed ID: 17554752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure stability of the alpha-helix structure in a de novo designed protein (alpha-l-alpha)(2) studied by FTIR spectroscopy.
    Takekiyo T; Takeda N; Isogai Y; Kato M; Taniguchi Y
    Biopolymers; 2007 Feb; 85(2):185-8. PubMed ID: 17103420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic peptide models of the Ca2+-binding loop of alpha-lactalbumin.
    Farkas V; Vass E; Hanssens I; Majer Z; Hollósi M
    Bioorg Med Chem; 2005 Sep; 13(17):5310-20. PubMed ID: 16046135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving a phenol hydroxyl group from the surface to the interior of a protein: effects on the phenol potential and pK(A).
    Hay S; Westerlund K; Tommos C
    Biochemistry; 2005 Sep; 44(35):11891-902. PubMed ID: 16128591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo proteins as models of radical enzymes.
    Tommos C; Skalicky JJ; Pilloud DL; Wand AJ; Dutton PL
    Biochemistry; 1999 Jul; 38(29):9495-507. PubMed ID: 10413527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic identification of different types of copper centers generated in synthetic four-helix bundle proteins.
    Schnepf R; Haehnel W; Wieghardt K; Hildebrandt P
    J Am Chem Soc; 2004 Nov; 126(44):14389-99. PubMed ID: 15521758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced approaches for the characterization of a de novo designed antiparallel coiled coil peptide.
    Pagel K; Seeger K; Seiwert B; Villa A; Mark AE; Berger S; Koksch B
    Org Biomol Chem; 2005 Apr; 3(7):1189-94. PubMed ID: 15785806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic, redox and magnetic properties of a tetraiminediphenolate iron(II) macrocyclic complex: a model compound for iron proteins.
    Raimondi AC; Souza VR; Toma HE; Evans DJ; Hasegawa T; Nunes FS
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jun; 61(8):1929-32. PubMed ID: 15863068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.