These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16819787)

  • 1. Application of a generalized MWC model for the mathematical simulation of metabolic pathways regulated by allosteric enzymes.
    Najdi TS; Yang CR; Shapiro BE; Hatfield GW; Mjolsness ED
    J Bioinform Comput Biol; 2006 Apr; 4(2):335-55. PubMed ID: 16819787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a generalized MWC model for the mathematical simulation of metabolic pathways regulated by allosteric enzymes.
    Najdi TS; Yang CR; Shapiro BE; Hatfield GW; Mjolsness ED
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():279-88. PubMed ID: 16447985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An enzyme mechanism language for the mathematical modeling of metabolic pathways.
    Yang CR; Shapiro BE; Mjolsness ED; Hatfield GW
    Bioinformatics; 2005 Mar; 21(6):774-80. PubMed ID: 15509612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and characterization of bifunctional enzymes. Domain swapping to produce new bifunctional enzymes in the aspartate pathway.
    James CL; Viola RE
    Biochemistry; 2002 Mar; 41(11):3720-5. PubMed ID: 11888289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cobalt(III) affinity-labeled aspartokinase. Formation of substrate and inhibitor adducts.
    Wright JK; Feldman J; Takahashi M
    Biochemistry; 1976 Aug; 15(17):3704-10. PubMed ID: 182215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and characterization of bifunctional enzymes. Substrate channeling in the aspartate pathway.
    James CL; Viola RE
    Biochemistry; 2002 Mar; 41(11):3726-31. PubMed ID: 11888290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. Kinetic and spectroscopic effects upon binding of serine and threonine.
    Costrejean JM; Truffa-Bachi P
    J Biol Chem; 1977 Aug; 252(15):5332-6. PubMed ID: 328500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biosynthesis of threonine by mammalian cells: expression of a complete bacterial biosynthetic pathway in an animal cell.
    Rees WD; Hay SM
    Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):999-1007. PubMed ID: 7639721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. Carboxymethylation of the enzyme: threonine binding and inhibition are functionally dissociable.
    Fontan E; Truffa-Bachi P
    J Biol Chem; 1978 Apr; 253(8):2754-7. PubMed ID: 344322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model for the branched chain amino acid biosynthetic pathways of Escherichia coli K12.
    Yang CR; Shapiro BE; Hung SP; Mjolsness ED; Hatfield GW
    J Biol Chem; 2005 Mar; 280(12):11224-32. PubMed ID: 15657047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proceedings: Organization of Escherichia coli aspartokinase I-Homoserine dehydrogenase I, an allosteric enzyme. -- Its possible origin by gene fusion and its evolutionary relationship with enzymes of the same biochemical pathway.
    Cohen GN
    Hoppe Seylers Z Physiol Chem; 1975 Mar; 356(3):224-5. PubMed ID: 1102410
    [No Abstract]   [Full Text] [Related]  

  • 12. Regulation of a metabolic system in vitro: synthesis of threonine from aspartic acid.
    Szczesiul M; Wampler DE
    Biochemistry; 1976 May; 15(10):2236-44. PubMed ID: 179564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Control of the metabolic pathway of threonine in E coli. Application of biotechnology].
    Raïs B; Mazat JP
    Acta Biotheor; 1995 Jun; 43(1-2):143-53. PubMed ID: 7709683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cobalt(III) labeled aspartokinase-homoserine dehydrogenase of Escherichia coli.
    Ryzewski C; Takahashi MT
    Biochemistry; 1975 Oct; 14(20):4482-6. PubMed ID: 1100105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, function, and possible origin of a bifunctional allosteric enzyme, Escherichia coli aspartokinase I-homoserine dehydrogenase I.
    Truffa-Bachi P; Veron M; Cohen GN
    CRC Crit Rev Biochem; 1974; 2(3):379-415. PubMed ID: 4155358
    [No Abstract]   [Full Text] [Related]  

  • 16. Proteolysis of the bifunctional methionine-repressible aspartokinase II-homoserine dehydrogenase II of Escherichia coli K12. Production of an active homoserine dehydrogenase fragment.
    Dautry-Varsat A; Cohen GN
    J Biol Chem; 1977 Nov; 252(21):7685-9. PubMed ID: 334767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinetic mechanisms of the bifunctional enzyme aspartokinase-homoserine dehydrogenase I from Escherichia coli.
    Angeles TS; Viola RE
    Arch Biochem Biophys; 1990 Nov; 283(1):96-101. PubMed ID: 2241177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel bifunctional aspartate kinase-homoserine dehydrogenase from the hyperthermophilic bacterium, Thermotoga maritima.
    Ohshida T; Koba K; Hayashi J; Yoneda K; Ohmori T; Ohshima T; Sakuraba H
    Biosci Biotechnol Biochem; 2018 Dec; 82(12):2084-2093. PubMed ID: 30175674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of aspartate and aspartate-derived antimetabolites with the enzymes of the threonine biosynthetic pathway of Escherichia coli.
    Shames SL; Ash DE; Wedler FC; Villafranca JJ
    J Biol Chem; 1984 Dec; 259(24):15331-9. PubMed ID: 6150934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible dissociation of aspartokinase I/homoserine dehydrogenase I from Escherichia coli K 12. The active species is the tetramer.
    Veron M; Guillou Y; Fazel A; Cohen GN
    Eur J Biochem; 1985 Sep; 151(3):521-4. PubMed ID: 3896789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.