These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 16819840)
1. Interactions of cationic ligands and proteins with small nucleic acids: analytic treatment of the large coulombic end effect on binding free energy as a function of salt concentration. Shkel IA; Ballin JD; Record MT Biochemistry; 2006 Jul; 45(27):8411-26. PubMed ID: 16819840 [TBL] [Abstract][Full Text] [Related]
2. Interactions of the KWK6 cationic peptide with short nucleic acid oligomers: demonstration of large Coulombic end effects on binding at 0.1-0.2 M salt. Ballin JD; Shkel IA; Record MT Nucleic Acids Res; 2004; 32(11):3271-81. PubMed ID: 15205469 [TBL] [Abstract][Full Text] [Related]
3. The importance of coulombic end effects: experimental characterization of the effects of oligonucleotide flanking charges on the strength and salt dependence of oligocation (L8+) binding to single-stranded DNA oligomers. Zhang W; Ni H; Capp MW; Anderson CF; Lohman TM; Record MT Biophys J; 1999 Feb; 76(2):1008-17. PubMed ID: 9916032 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site. Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406 [TBL] [Abstract][Full Text] [Related]
5. Binding of cationic (+4) alanine- and glycine-containing oligopeptides to double-stranded DNA: thermodynamic analysis of effects of coulombic interactions and alpha-helix induction. Padmanabhan S; Zhang W; Capp MW; Anderson CF; Record MT Biochemistry; 1997 Apr; 36(17):5193-206. PubMed ID: 9136881 [TBL] [Abstract][Full Text] [Related]
6. Wrapping of flanking non-operator DNA in lac repressor-operator complexes: implications for DNA looping. Tsodikov OV; Saecker RM; Melcher SE; Levandoski MM; Frank DE; Capp MW; Record MT J Mol Biol; 1999 Dec; 294(3):639-55. PubMed ID: 10610786 [TBL] [Abstract][Full Text] [Related]
7. Salt effects on polyelectrolyte-ligand binding: comparison of Poisson-Boltzmann, and limiting law/counterion binding models. Sharp KA; Friedman RA; Misra V; Hecht J; Honig B Biopolymers; 1995 Aug; 36(2):245-62. PubMed ID: 7492748 [TBL] [Abstract][Full Text] [Related]
8. Coulombic free energy of polymeric nucleic acid: low- and high-salt analytical approximations for the cylindrical Poisson-Boltzmann model. Shkel IA J Phys Chem B; 2010 Aug; 114(33):10793-803. PubMed ID: 20681741 [TBL] [Abstract][Full Text] [Related]
9. Salt effects on ligand-DNA binding. Minor groove binding antibiotics. Misra VK; Sharp KA; Friedman RA; Honig B J Mol Biol; 1994 Apr; 238(2):245-63. PubMed ID: 7512653 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamics of single-stranded RNA and DNA interactions with oligolysines containing tryptophan. Effects of base composition. Mascotti DP; Lohman TM Biochemistry; 1993 Oct; 32(40):10568-79. PubMed ID: 7691177 [TBL] [Abstract][Full Text] [Related]
11. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Sham YY; Chu ZT; Tao H; Warshel A Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821 [TBL] [Abstract][Full Text] [Related]
12. Salt dependent binding of T4 gene 32 protein to single and double-stranded DNA: single molecule force spectroscopy measurements. Pant K; Karpel RL; Rouzina I; Williams MC J Mol Biol; 2005 Jun; 349(2):317-30. PubMed ID: 15890198 [TBL] [Abstract][Full Text] [Related]
13. Calorimetric studies of E. coli SSB protein-single-stranded DNA interactions. Effects of monovalent salts on binding enthalpy. Kozlov AG; Lohman TM J Mol Biol; 1998 May; 278(5):999-1014. PubMed ID: 9600857 [TBL] [Abstract][Full Text] [Related]
14. Grand canonical Monte Carlo molecular and thermodynamic predictions of ion effects on binding of an oligocation (L8+) to the center of DNA oligomers. Olmsted MC; Bond JP; Anderson CF; Record MT Biophys J; 1995 Feb; 68(2):634-47. PubMed ID: 7696515 [TBL] [Abstract][Full Text] [Related]
15. Effect of the number of nucleic acid oligomer charges on the salt dependence of stability (DeltaG 37degrees) and melting temperature (Tm): NLPB analysis of experimental data. Shkel IA; Record MT Biochemistry; 2004 Jun; 43(22):7090-101. PubMed ID: 15170346 [TBL] [Abstract][Full Text] [Related]
16. A general method of analysis of ligand binding to competing macromolecules using the spectroscopic signal originating from a reference macromolecule. Application to Escherichia coli replicative helicase DnaB protein nucleic acid interactions. Jezewska MJ; Bujalowski W Biochemistry; 1996 Feb; 35(7):2117-28. PubMed ID: 8652554 [TBL] [Abstract][Full Text] [Related]
17. The role of DNA-protein salt bridges in molecular recognition: a model study. Gurlie R; Duong TH; Zakrzewska K Biopolymers; 1999 Apr; 49(4):313-27. PubMed ID: 10079770 [TBL] [Abstract][Full Text] [Related]
18. Ligand binding distributions in nucleic acids. Poland D Biopolymers; 2001 Apr; 58(5):477-90. PubMed ID: 11241219 [TBL] [Abstract][Full Text] [Related]
19. Binding of netropsin to several DNA constructs: evidence for at least two different 1:1 complexes formed from an -AATT-containing ds-DNA construct and a single minor groove binding ligand. Freyer MW; Buscaglia R; Cashman D; Hyslop S; Wilson WD; Chaires JB; Lewis EA Biophys Chem; 2007 Mar; 126(1-3):186-96. PubMed ID: 16837123 [TBL] [Abstract][Full Text] [Related]
20. Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures. Owczarzy R; You Y; Moreira BG; Manthey JA; Huang L; Behlke MA; Walder JA Biochemistry; 2004 Mar; 43(12):3537-54. PubMed ID: 15035624 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]