BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 16819926)

  • 1. Characterization of a new Maillard type reaction product generated by heating 1-deoxymaltulosyl-glycine in the presence of cysteine.
    Ota M; Kohmura M; Kawaguchi H
    J Agric Food Chem; 2006 Jul; 54(14):5127-31. PubMed ID: 16819926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of hydroxycinnamic acid-maillard reaction products in low-moisture baking model systems.
    Jiang D; Chiaro C; Maddali P; Prabhu KS; Peterson DG
    J Agric Food Chem; 2009 Nov; 57(21):9932-43. PubMed ID: 19817410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of 5-hydroxy-3-mercapto-2-pentanone in the maillard reaction of thiamine, cysteine, and xylose.
    Cerny C; Guntz-Dubini R
    J Agric Food Chem; 2008 Nov; 56(22):10679-82. PubMed ID: 18983164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Amadori compounds by high-performance cation exchange chromatography coupled to tandem mass spectrometry.
    Davidek T; Kraehenbuehl K; Devaud S; Robert F; Blank I
    Anal Chem; 2005 Jan; 77(1):140-7. PubMed ID: 15623289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of 2-acetylfuran formation between ribose and glucose in the Maillard reaction.
    Wang Y; Ho CT
    J Agric Food Chem; 2008 Dec; 56(24):11997-2001. PubMed ID: 19090713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meat flavor generation from different composition patterns of initial Maillard stage intermediates formed in heated cysteine-xylose-glycine reaction systems.
    Zhao J; Wang T; Xie J; Xiao Q; Du W; Wang Y; Cheng J; Wang S
    Food Chem; 2019 Feb; 274():79-88. PubMed ID: 30373010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of model melanoidins by the thermal degradation profile.
    Adams A; Abbaspour Tehrani K; Kersiene M; Venskutonis R; De Kimpe N
    J Agric Food Chem; 2003 Jul; 51(15):4338-43. PubMed ID: 12848507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sugar-Conjugated Bis(glycinato)copper(II) Complexes and Their Modulating Influence on the Maillard Reaction.
    Nashalian O; Yaylayan VA
    J Agric Food Chem; 2015 May; 63(17):4353-60. PubMed ID: 25891171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of epicatechin in aqueous glycine and glucose maillard reaction models: quenching of C2, C3, and C4 sugar fragments.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2005 May; 53(10):4130-5. PubMed ID: 15884850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural studies of the Maillard reaction products of a protein using ion trap mass spectrometry.
    Tagami U; Akashi S; Mizukoshi T; Suzuki E; Hirayama K
    J Mass Spectrom; 2000 Feb; 35(2):131-8. PubMed ID: 10679972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous Preparation of Maillard Reaction Intermediate from Glutathione and Xylose and its Volatile Formation During Thermal Treatment.
    Sun F; Cui H; Zhan H; Xu M; Hayat K; Tahir MU; Hussain S; Zhang X; Ho CT
    J Food Sci; 2019 Dec; 84(12):3584-3593. PubMed ID: 31721210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery and structure determination of a novel Maillard-derived sweetness enhancer by application of the comparative taste dilution analysis (cTDA).
    Ottinger H; Soldo T; Hofmann T
    J Agric Food Chem; 2003 Feb; 51(4):1035-41. PubMed ID: 12568569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular shape analysis of a Maillard reaction intermediate.
    Jokic A; Zimpel Z; Huang PM; Mezey PG
    SAR QSAR Environ Res; 2001; 12(3):297-307. PubMed ID: 11696926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibiting the color formation by gradient temperature-elevating Maillard reaction of soybean peptide-xylose system based on interaction of l-cysteine and Amadori compounds.
    Huang MG; Zhang XM; Eric K; Abbas S; Hayat K; Liu P; Xia SQ; Jia CS
    J Pept Sci; 2012 May; 18(5):342-9. PubMed ID: 22438169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. alpha-Dicarbonyl compounds formed by nonenzymatic browning during the dry heating of caseinate and lactose.
    Ge Pan G; Oliver CM; Melton LD
    J Agric Food Chem; 2006 Sep; 54(18):6852-7. PubMed ID: 16939349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of the amino acid in glucose-glycine melanoidins investigated by solid-state nuclear magnetic resonance (NMR).
    Fang X; Schmidt-Rohr K
    J Agric Food Chem; 2009 Nov; 57(22):10701-11. PubMed ID: 19919118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and partial characterization of four fluorophores formed by nonenzymatic browning of methylglyoxal and glutamine-derived ammonia.
    Niquet C; Pilard S; Mathiron D; Tessier FJ
    Ann N Y Acad Sci; 2008 Apr; 1126():158-61. PubMed ID: 18448810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal decomposition of specifically phosphorylated D-glucoses and their role in the control of the Maillard reaction.
    Yaylayan VA; Machiels D; Istasse L
    J Agric Food Chem; 2003 May; 51(11):3358-66. PubMed ID: 12744667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of polyphenoloxidase activity by mixtures of heated cysteine derivatives with carbonyl compounds.
    Chériot S; Billaud C; Maillard MN; Nicolas J
    Mol Nutr Food Res; 2007 Apr; 51(4):395-403. PubMed ID: 17357978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring carbonyl-amine reaction between pyruvic acid and alpha-amino alcohols by FTIR spectroscopy--a possible route to Amadori products.
    Wnorowski A; Yaylayan VA
    J Agric Food Chem; 2003 Oct; 51(22):6537-43. PubMed ID: 14558775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.