BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16819926)

  • 21. Influence of DNA on volatile generation from Maillard reaction of cysteine and ribose.
    Chen Y; Chin CK; Ho CT
    Adv Exp Med Biol; 2004; 542():327-40. PubMed ID: 15174593
    [No Abstract]   [Full Text] [Related]  

  • 22. Simultaneous quantitative analysis of maillard reaction precursors and products by high-performance anion exchange chromatography.
    Davidek T; Clety N; Devaud S; Robert F; Blank I
    J Agric Food Chem; 2003 Dec; 51(25):7259-65. PubMed ID: 14640567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separation of amino acids, peptides and corresponding Amadori compounds on a silica column at elevated temperature.
    Hao Z; Lu CY; Xiao B; Weng N; Parker B; Knapp M; Ho CT
    J Chromatogr A; 2007 Apr; 1147(2):165-71. PubMed ID: 17350634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Occurrence of galactosyl isomaltol and galactosyl beta-pyranone in commercial drinking milk.
    Pellegrino L; Cattaneo S
    Nahrung; 2001 Jun; 45(3):195-200. PubMed ID: 11455787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural analysis of the sheath of a sheathed bacterium, Leptothrix cholodnii.
    Takeda M; Makita H; Ohno K; Nakahara Y; Koizumi J
    Int J Biol Macromol; 2005 Oct; 37(1-2):92-8. PubMed ID: 16214212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of volatiles from the thermal decomposition of Amadori rearrangement products in the cysteine-glucose Maillard reaction and density functional theory study.
    Lei L; Wang S; Zhao Z; Dou S; Zhang S; Wang Y; Gao P; Binchen Wang ; Xu X; Dong L
    Food Res Int; 2024 Jul; 188():114454. PubMed ID: 38823832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrospray positive ionization tandem mass spectrometry of Amadori compounds.
    Wang J; Lu YM; Liu BZ; He HY
    J Mass Spectrom; 2008 Feb; 43(2):262-4. PubMed ID: 17935069
    [No Abstract]   [Full Text] [Related]  

  • 28. The potential antimutagenic and antioxidant effects of Maillard reaction products used as "natural antibrowning" agents.
    Wagner KH; Reichhold S; Koschutnig K; Chériot S; Billaud C
    Mol Nutr Food Res; 2007 Apr; 51(4):496-504. PubMed ID: 17390400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sugar fragmentation in the maillard reaction cascade: formation of short-chain carboxylic acids by a new oxidative alpha-dicarbonyl cleavage pathway.
    Davídek T; Robert F; Devaud S; Vera FA; Blank I
    J Agric Food Chem; 2006 Sep; 54(18):6677-84. PubMed ID: 16939326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Heat-induced decomposition of disaccharide Amadori compounds in quasi-water-free reaction conditions].
    Kroh L; Schrödter R; Mügge C; Westphal G; Baltes W
    Z Lebensm Unters Forsch; 1992 Mar; 194(3):216-21. PubMed ID: 1519387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of pH, temperature, and moisture on the formation of volatile compounds in glycine/glucose model systems.
    Ames JM; Guy RC; Kipping GJ
    J Agric Food Chem; 2001 Sep; 49(9):4315-23. PubMed ID: 11559131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of aroma compounds from ribose and cysteine during the Maillard reaction.
    Cerny C; Davidek T
    J Agric Food Chem; 2003 Apr; 51(9):2714-21. PubMed ID: 12696962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensory activity, chemical structure, and synthesis of Maillard generated bitter-tasting 1-oxo-2,3-dihydro-1H-indolizinium-6-olates.
    Frank O; Jezussek M; Hofmann T
    J Agric Food Chem; 2003 Apr; 51(9):2693-9. PubMed ID: 12696959
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of galactomannan derivatives in roasted coffee beverages.
    Nunes FM; Reis A; Domingues MR; Coimbra MA
    J Agric Food Chem; 2006 May; 54(9):3428-39. PubMed ID: 16637704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of volatiles in unhopped wort.
    De Schutter DP; Saison D; Delvaux F; Derdelinckx G; Rock JM; Neven H; Delvaux FR
    J Agric Food Chem; 2008 Jan; 56(1):246-54. PubMed ID: 18078319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of water content on volatile generation and peptide degradation in the maillard reaction of glycine, diglycine, and triglycine.
    Lu CY; Hao Z; Payne R; Ho CT
    J Agric Food Chem; 2005 Aug; 53(16):6443-7. PubMed ID: 16076132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the effect of tetraborate ions in the generation of colored products in thermally processed glycine-carbohydrate solutions.
    Rizzi GP
    J Agric Food Chem; 2007 Mar; 55(5):2016-9. PubMed ID: 17288450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of reaction conditions on the origin and yields of acetic acid generated by the maillard reaction.
    Davidek T; Devaud S; Robert F; Blank I
    Ann N Y Acad Sci; 2005 Jun; 1043():73-9. PubMed ID: 16037224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of N alpha-(1-phenyl-2-mercaptoethyl) amino acids, new building blocks for ligation and cyclization at non-cysteine sites: scope and limitations in peptide synthesis.
    Tchertchian S; Hartley O; Botti P
    J Org Chem; 2004 Dec; 69(26):9208-14. PubMed ID: 15609957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-reactivity relationships of flavan-3-ols on product generation in aqueous glucose/glycine model systems.
    Noda Y; Peterson DG
    J Agric Food Chem; 2007 May; 55(9):3686-91. PubMed ID: 17394338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.