These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 16819930)
1. Evidence for protein degradation by Botrytis cinerea and relationships with alteration of synthetic wine foaming properties. Marchal R; Warchol M; Cilindre C; Jeandet P J Agric Food Chem; 2006 Jul; 54(14):5157-65. PubMed ID: 16819930 [TBL] [Abstract][Full Text] [Related]
2. Influence of Grape Berry Maturity on Juice and Base Wine Composition and Foaming Properties of Sparkling Wines from the Champagne Region. Liu PH; Vrigneau C; Salmon T; Hoang DA; Boulet JC; Jégou S; Marchal R Molecules; 2018 Jun; 23(6):. PubMed ID: 29882831 [TBL] [Abstract][Full Text] [Related]
3. Comparative protein profile analysis of wines made from Botrytis cinerea infected and healthy grapes reveals a novel biomarker for gushing in sparkling wine. Kupfer VM; Vogt EI; Ziegler T; Vogel RF; Niessen L Food Res Int; 2017 Sep; 99(Pt 1):501-509. PubMed ID: 28784511 [TBL] [Abstract][Full Text] [Related]
4. Proteomic approach to identify champagne wine proteins as modified by Botrytis cinerea infection. Cilindre C; Jégou S; Hovasse A; Schaeffer C; Castro AJ; Clément C; Van Dorsselaer A; Jeandet P; Marchal R J Proteome Res; 2008 Mar; 7(3):1199-208. PubMed ID: 18205300 [TBL] [Abstract][Full Text] [Related]
5. Impact of Marchal R; Salmon T; Gonzalez R; Kemp B; Vrigneau C; Williams P; Doco T Molecules; 2020 Jan; 25(3):. PubMed ID: 31979163 [No Abstract] [Full Text] [Related]
6. Determination of the grape invertase content (using PTA-ELISA) following various fining treatments versus changes in the total protein content of wine. relationships with wine foamability. Dambrouck T; Marchal R; Cilindre C; Parmentier M; Jeandet P J Agric Food Chem; 2005 Nov; 53(22):8782-9. PubMed ID: 16248585 [TBL] [Abstract][Full Text] [Related]
7. Metabolic influence of Botrytis cinerea infection in champagne base wine. Hong YS; Cilindre C; Liger-Belair G; Jeandet P; Hertkorn N; Schmitt-Kopplin P J Agric Food Chem; 2011 Jul; 59(13):7237-45. PubMed ID: 21604814 [TBL] [Abstract][Full Text] [Related]
8. High-proline proteins in experimental hazy white wine produced from partially botrytized grapes. Perutka Z; Šufeisl M; Strnad M; Šebela M Biotechnol Appl Biochem; 2019 May; 66(3):398-411. PubMed ID: 30715757 [TBL] [Abstract][Full Text] [Related]
9. Influence of grape maturity on the foaming properties of base wines and sparkling wines (Cava). Esteruelas M; González-Royo E; Kontoudakis N; Orte A; Cantos A; Canals JM; Zamora F J Sci Food Agric; 2015 Aug; 95(10):2071-80. PubMed ID: 25242464 [TBL] [Abstract][Full Text] [Related]
10. Laccases 2 & 3 as biomarkers of Botrytis cinerea infection in sweet white wines. Ployon S; Attina A; Vialaret J; Walker AS; Hirtz C; Saucier C Food Chem; 2020 Jun; 315():126233. PubMed ID: 32018078 [TBL] [Abstract][Full Text] [Related]
11. Effects of the origins of Botrytis cinerea on earthy aromas from grape broth media further inoculated with Penicillium expansum. Morales-Valle H; Silva LC; Paterson RR; Venâncio A; Lima N Food Microbiol; 2011 Aug; 28(5):1048-53. PubMed ID: 21569951 [TBL] [Abstract][Full Text] [Related]
12. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries. Hong YS; Martinez A; Liger-Belair G; Jeandet P; Nuzillard JM; Cilindre C J Exp Bot; 2012 Oct; 63(16):5773-85. PubMed ID: 22945941 [TBL] [Abstract][Full Text] [Related]
13. Foaming properties of various Champagne wines depending on several parameters: grape variety, aging, protein and CO2 content. Cilindre C; Liger-Belair G; Villaume S; Jeandet P; Marchal R Anal Chim Acta; 2010 Feb; 660(1-2):164-70. PubMed ID: 20103158 [TBL] [Abstract][Full Text] [Related]
14. Oxidation of Wine Polyphenols by Secretomes of Wild Botrytis cinerea Strains from White and Red Grape Varieties and Determination of Their Specific Laccase Activity. Zimdars S; Hitschler J; Schieber A; Weber F J Agric Food Chem; 2017 Dec; 65(48):10582-10590. PubMed ID: 29125293 [TBL] [Abstract][Full Text] [Related]
15. Foam aptitude of trepat and monastrell red varieties in cava elaboration. 2. Second fermentation and aging. Girbau-Solà T; López-Barajas M; López-Tamames E; Buxaderas S J Agric Food Chem; 2002 Sep; 50(20):5600-4. PubMed ID: 12236684 [TBL] [Abstract][Full Text] [Related]
16. Aspartic acid protease from Botrytis cinerea removes haze-forming proteins during white winemaking. Van Sluyter SC; Warnock NI; Schmidt S; Anderson P; van Kan JA; Bacic A; Waters EJ J Agric Food Chem; 2013 Oct; 61(40):9705-11. PubMed ID: 24007329 [TBL] [Abstract][Full Text] [Related]
17. Botrytis cinerea expression profile and metabolism differs between noble and grey rot of grapes. Otto M; Geml J; Hegyi ÁI; Hegyi-Kaló J; Pierneef R; Pogány M; Kun J; Gyenesei A; Váczy KZ Food Microbiol; 2022 Sep; 106():104037. PubMed ID: 35690441 [TBL] [Abstract][Full Text] [Related]
18. Rapid In-Field Volatile Sampling for Detection of Jiang L; Dumlao MC; Donald WA; Steel CC; Schmidtke LM Molecules; 2023 Jul; 28(13):. PubMed ID: 37446889 [TBL] [Abstract][Full Text] [Related]
19. Foam-stabilizing properties of the yeast protein PAU5 and evaluation of factors that can influence its concentration in must and wine. Kupfer VM; Vogt EI; Siebert AK; Meyer ML; Vogel RF; Niessen L Food Res Int; 2017 Dec; 102():111-118. PubMed ID: 29195929 [TBL] [Abstract][Full Text] [Related]
20. Tracking cell wall changes in wine and table grapes undergoing Botrytis cinerea infection using glycan microarrays. Weiller F; Schückel J; Willats WGT; Driouich A; Vivier MA; Moore JP Ann Bot; 2021 Sep; 128(5):527-543. PubMed ID: 34192306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]