BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 16820004)

  • 1. Contribution of the corpus callosum to bilateral representation of the trunk midline in the human brain: an fMRI study of callosotomized patients.
    Fabri M; Polonara G; Mascioli G; Paggi A; Salvolini U; Manzoni T
    Eur J Neurosci; 2006 Jun; 23(11):3139-48. PubMed ID: 16820004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ipsilateral cortical representation of tactile and painful information in acallosal and callosotomized subjects.
    Duquette M; Rainville P; Alary F; Lassonde M; Lepore F
    Neuropsychologia; 2008; 46(8):2274-9. PubMed ID: 18378266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilateral cortical representation of the trunk midline in human first somatic sensory area.
    Fabri M; Polonara G; Salvolini U; Manzoni T
    Hum Brain Mapp; 2005 Jul; 25(3):287-96. PubMed ID: 15827999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Posterior corpus callosum and interhemispheric transfer of somatosensory information: an fMRI and neuropsychological study of a partially callosotomized patient.
    Fabri M; Polonara G; Del Pesce M; Quattrini A; Salvolini U; Manzoni T
    J Cogn Neurosci; 2001 Nov; 13(8):1071-9. PubMed ID: 11784445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of posterior corpus callosum to the interhemispheric transfer of tactile information.
    Fabri M; Del Pesce M; Paggi A; Polonara G; Bartolini M; Salvolini U; Manzoni T
    Brain Res Cogn Brain Res; 2005 Jun; 24(1):73-80. PubMed ID: 15922160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the corpus callosum in the somatosensory activation of the ipsilateral cerebral cortex: an fMRI study of callosotomized patients.
    Fabri M; Polonara G; Quattrini A; Salvolini U; Del Pesce M; Manzoni T
    Eur J Neurosci; 1999 Nov; 11(11):3983-94. PubMed ID: 10583487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visceral and cutaneous pain representation in parasylvian cortex.
    Strigo IA; Albanese MC; Bushnell MC; Duncan GH
    Neurosci Lett; 2005 Aug 12-19; 384(1-2):54-9. PubMed ID: 15905031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transhemispheric depolarizations persist in the intracerebral hemorrhage swine brain following corpus callosal transection.
    Mun-Bryce S; Roberts L; Bartolo A; Okada Y
    Brain Res; 2006 Feb; 1073-1074():481-90. PubMed ID: 16443194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional reorganization of the auditory pathways (or lack thereof) in callosal agenesis is predicted by monaural sound localization performance.
    Paiement P; Champoux F; Bacon BA; Lassonde M; Mensour B; Leroux JM; Lepore F
    Neuropsychologia; 2010 Jan; 48(2):601-6. PubMed ID: 19883670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilateral receptive fields and callosal connectivity of the body midline representation in the first somatosensory area of primates.
    Conti F; Fabri M; Manzoni T
    Somatosens Res; 1986; 3(4):273-89. PubMed ID: 3775151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetry of language activation relates to regional callosal morphology following early cerebral injury.
    Wood AG; Saling MM; Jackson GD; Reutens DC
    Epilepsy Behav; 2008 Apr; 12(3):427-33. PubMed ID: 18249586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute changes in cortical excitability in the cortex contralateral to focal intracerebral hemorrhage in the swine.
    Mun-Bryce S; Roberts LJ; Hunt WC; Bartolo A; Okada Y
    Brain Res; 2004 Nov; 1026(2):218-26. PubMed ID: 15488483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confirming white matter fMRI activation in the corpus callosum: co-localization with DTI tractography.
    Mazerolle EL; Beyea SD; Gawryluk JR; Brewer KD; Bowen CV; D'Arcy RC
    Neuroimage; 2010 Apr; 50(2):616-21. PubMed ID: 20053383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Functional topography of the human corpus callosum].
    Salvolini U; Polonara G; Mascioli G; Fabri M; Manzoni T
    Bull Acad Natl Med; 2010 Mar; 194(3):617-31; discussion 631-2. PubMed ID: 21171254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistent enhancement of functional MRI responsiveness to sensory stimulation following repeated seizures.
    Vuong J; Henderson AK; Tuor UI; Dunn JF; Teskey GC
    Epilepsia; 2011 Dec; 52(12):2285-92. PubMed ID: 22091536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing contralateral SI activity reveals hindlimb receptive fields in the SI forelimb-stump representation of neonatally amputated rats.
    Pluto CP; Chiaia NL; Rhoades RW; Lane RD
    J Neurophysiol; 2005 Sep; 94(3):1727-32. PubMed ID: 15800076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. fMRI reflects functional connectivity of human somatosensory cortex.
    Blatow M; Nennig E; Durst A; Sartor K; Stippich C
    Neuroimage; 2007 Sep; 37(3):927-36. PubMed ID: 17629500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliable detection of bilateral activation in human primary somatosensory cortex by unilateral median nerve stimulation.
    Sutherland MT; Tang AC
    Neuroimage; 2006 Dec; 33(4):1042-54. PubMed ID: 16997579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of the callosal transfer in defining the peripheral reactivity of somesthetic cortical neurones.
    Innocenti GM; Manzoni T; Spidalieri G
    Arch Ital Biol; 1973 Jun; 111(2):187-221. PubMed ID: 18843823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interhemispheric plasticity protects the deafferented somatosensory cortex from functional takeover after nerve injury.
    Yu X; Koretsky AP
    Brain Connect; 2014 Nov; 4(9):709-17. PubMed ID: 25117691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.