These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
423 related articles for article (PubMed ID: 16820188)
1. Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Conesa HM; Faz A; Arnaldos R Chemosphere; 2007 Jan; 66(1):38-44. PubMed ID: 16820188 [TBL] [Abstract][Full Text] [Related]
2. Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain). Conesa HM; Faz A; Arnaldos R Sci Total Environ; 2006 Jul; 366(1):1-11. PubMed ID: 16499952 [TBL] [Abstract][Full Text] [Related]
3. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. Rodríguez L; Ruiz E; Alonso-Azcárate J; Rincón J J Environ Manage; 2009 Feb; 90(2):1106-16. PubMed ID: 18572301 [TBL] [Abstract][Full Text] [Related]
4. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
5. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Yoon J; Cao X; Zhou Q; Ma LQ Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337 [TBL] [Abstract][Full Text] [Related]
6. Metal accumulation in wild plants surrounding mining wastes. González RC; González-Chávez MC Environ Pollut; 2006 Nov; 144(1):84-92. PubMed ID: 16631286 [TBL] [Abstract][Full Text] [Related]
7. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. Moreno-Jiménez E; Peñalosa JM; Manzano R; Carpena-Ruiz RO; Gamarra R; Esteban E J Hazard Mater; 2009 Mar; 162(2-3):854-9. PubMed ID: 18603359 [TBL] [Abstract][Full Text] [Related]
8. The Cartagena-La Unión mining district (SE Spain): a review of environmental problems and emerging phytoremediation solutions after fifteen years research. Conesa HM; Schulin R J Environ Monit; 2010 Jun; 12(6):1225-33. PubMed ID: 20390210 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of metal tolerant plant communities' development in mine tailings from the Cartagena-La Unión Mining District (SE Spain) and their interest for further revegetation purposes. Conesa HM; García G; Faz A; Arnaldos R Chemosphere; 2007 Jun; 68(6):1180-5. PubMed ID: 17350078 [TBL] [Abstract][Full Text] [Related]
11. Contribution of heavy metals and As-loaded lupin root mineralization to the availability of the pollutants in multi-contaminated soils. Vázquez S; Carpena RO; Bernal MP Environ Pollut; 2008 Mar; 152(2):373-9. PubMed ID: 17655992 [TBL] [Abstract][Full Text] [Related]
12. Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications. Freitas H; Prasad MN; Pratas J Environ Int; 2004 Mar; 30(1):65-72. PubMed ID: 14664866 [TBL] [Abstract][Full Text] [Related]
13. Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Boularbah A; Schwartz C; Bitton G; Morel JL Chemosphere; 2006 May; 63(5):802-10. PubMed ID: 16213554 [TBL] [Abstract][Full Text] [Related]
14. Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Santibáñez C; Verdugo C; Ginocchio R Sci Total Environ; 2008 May; 395(1):1-10. PubMed ID: 18342913 [TBL] [Abstract][Full Text] [Related]
15. Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils. Guo Z; Megharaj M; Beer M; Ming H; Mahmudur Rahman M; Wu W; Naidu R Bioresour Technol; 2009 Sep; 100(17):3831-6. PubMed ID: 19349173 [TBL] [Abstract][Full Text] [Related]
16. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Walker DJ; Clemente R; Bernal MP Chemosphere; 2004 Oct; 57(3):215-24. PubMed ID: 15312738 [TBL] [Abstract][Full Text] [Related]
17. Spreading of pollutants from alkaline mine drainage. Rodalquilar mining district (SE Spain). González V; García I; del Moral F; de Haro S; Sánchez JA; Simón M J Environ Manage; 2012 Sep; 106():69-74. PubMed ID: 22564458 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health. Epelde L; Becerril JM; Mijangos I; Garbisu C J Environ Qual; 2009; 38(5):2041-9. PubMed ID: 19704147 [TBL] [Abstract][Full Text] [Related]
19. Growth of Lygeum spartum in acid mine tailings: response of plants developed from seedlings, rhizomes and at field conditions. Conesa HM; Robinson BH; Schulin R; Nowack B Environ Pollut; 2007 Feb; 145(3):700-7. PubMed ID: 17011091 [TBL] [Abstract][Full Text] [Related]
20. Using Mediterranean shrubs for the phytoremediation of a soil impacted by pyritic wastes in Southern Spain: a field experiment. Moreno-Jiménez E; Vázquez S; Carpena-Ruiz RO; Esteban E; Peñalosa JM J Environ Manage; 2011 Jun; 92(6):1584-90. PubMed ID: 21353375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]