BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 16820450)

  • 1. Biodesulfurization in biphasic systems containing organic solvents.
    Tao F; Yu B; Xu P; Ma CQ
    Appl Environ Microbiol; 2006 Jul; 72(7):4604-9. PubMed ID: 16820450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodesulfurization of dibenzothiophene by growing cells of Pseudomonas putida CECT 5279 in biphasic media.
    Caro A; Boltes K; Leton P; Garcia-Calvo E
    Chemosphere; 2008 Oct; 73(5):663-9. PubMed ID: 18760442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel organic solvent-responsive expression vectors for biocatalysis: application for development of an organic solvent-tolerant biodesulfurizing strain.
    Tao F; Liu Y; Luo Q; Su F; Xu Y; Li F; Yu B; Ma C; Xu P
    Bioresour Technol; 2011 Oct; 102(20):9380-7. PubMed ID: 21875790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Description of by-product inhibiton effects on biodesulfurization of dibenzothiophene in biphasic media.
    Caro A; Boltes K; Letón P; García-Calvo E
    Biodegradation; 2008 Jul; 19(4):599-611. PubMed ID: 18038247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain.
    Davoodi-Dehaghani F; Vosoughi M; Ziaee AA
    Bioresour Technol; 2010 Feb; 101(3):1102-5. PubMed ID: 19819129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation between bacterial strain resistance to solvents and biodesulfurization activity in organic medium.
    Bouchez-Naïtali M; Abbad-Andaloussi S; Warzywoda M; Monot F
    Appl Microbiol Biotechnol; 2004 Sep; 65(4):440-5. PubMed ID: 15133641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase.
    Blank LM; Ionidis G; Ebert BE; Bühler B; Schmid A
    FEBS J; 2008 Oct; 275(20):5173-90. PubMed ID: 18803670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of PASHs by various analytical techniques based on gas chromatography-mass spectrometry: application to a biodesulfurization process.
    Mezcua M; Fernández-Alba AR; Boltes K; Alonso Del Aguila R; Leton P; Rodríguez A; García-Calvo E
    Talanta; 2008 Jun; 75(5):1158-66. PubMed ID: 18585197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The enhancement of biodesulfurization activity in a novel indigenous engineered Pseudomonas putida.
    Raheb J; Hajipour MJ; Saadati M; Rasekh B; Memari B
    Iran Biomed J; 2009 Oct; 13(4):207-13. PubMed ID: 19946346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Industrial potential of organic solvent tolerant bacteria.
    Sardessai YN; Bhosle S
    Biotechnol Prog; 2004; 20(3):655-60. PubMed ID: 15176865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of hydrophobic Rhodococcus opacus for biodesulfurization in oil-water biphasic reaction mixtures.
    Kawaguchi H; Kobayashi H; Sato K
    J Biosci Bioeng; 2012 Mar; 113(3):360-6. PubMed ID: 22099375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the proteome response to toluene exposure in the solvent tolerant Pseudomonas putida S12.
    Wijte D; van Baar BL; Heck AJ; Altelaar AF
    J Proteome Res; 2011 Feb; 10(2):394-403. PubMed ID: 20979388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains.
    Pinkart HC; White DC
    J Bacteriol; 1997 Jul; 179(13):4219-26. PubMed ID: 9209036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent toxicity in organic-aqueous systems analysed by multivariate analysis.
    de Carvalho CC; da Fonseca MM
    Bioprocess Biosyst Eng; 2004 Dec; 26(6):361-75. PubMed ID: 15378340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of vitreoscilla hemoglobin.
    Xiong X; Xing J; Li X; Bai X; Li W; Li Y; Liu H
    Appl Environ Microbiol; 2007 Apr; 73(7):2394-7. PubMed ID: 17293512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents.
    de Carvalho CC; da Cruz AA; Pons MN; Pinheiro HM; Cabral JM; da Fonseca MM; Ferreira BS; Fernandes P
    Microsc Res Tech; 2004 Jun; 64(3):215-22. PubMed ID: 15452888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodesulfurization of benzothiophene and dibenzothiophene by a newly isolated Rhodococcus strain.
    Tanaka Y; Matsui T; Konishi J; Maruhashi K; Kurane R
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):325-8. PubMed ID: 12111165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ttgGHI solvent efflux pump operon of Pseudomonas putida DOT-T1E is located on a large self-transmissible plasmid.
    Rodríguez-Herva JJ; García V; Hurtado A; Segura A; Ramos JL
    Environ Microbiol; 2007 Jun; 9(6):1550-61. PubMed ID: 17504492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial desulfurization of gasoline by free whole-cells of Rhodococcus erythropolis XP.
    Yu B; Ma C; Zhou W; Wang Y; Cai X; Tao F; Zhang Q; Tong M; Qu J; Xu P
    FEMS Microbiol Lett; 2006 May; 258(2):284-9. PubMed ID: 16640586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodesulfurization of dibenzothiophene by recombinant Gordonia alkanivorans RIPI90A.
    Shavandi M; Sadeghizadeh M; Zomorodipour A; Khajeh K
    Bioresour Technol; 2009 Jan; 100(1):475-9. PubMed ID: 18653330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.