These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 16820865)

  • 21. Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa).
    Jain M; Kaur N; Garg R; Thakur JK; Tyagi AK; Khurana JP
    Funct Integr Genomics; 2006 Jan; 6(1):47-59. PubMed ID: 16200395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arabidopsis PCFS4, a homologue of yeast polyadenylation factor Pcf11p, regulates FCA alternative processing and promotes flowering time.
    Xing D; Zhao H; Xu R; Li QQ
    Plant J; 2008 Jun; 54(5):899-910. PubMed ID: 18298670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1.
    Suzaki T; Sato M; Ashikari M; Miyoshi M; Nagato Y; Hirano HY
    Development; 2004 Nov; 131(22):5649-57. PubMed ID: 15509765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flowering-Related RING Protein 1 (FRRP1) Regulates Flowering Time and Yield Potential by Affecting Histone H2B Monoubiquitination in Rice (Oryza Sativa).
    Du Y; He W; Deng C; Chen X; Gou L; Zhu F; Guo W; Zhang J; Wang T
    PLoS One; 2016; 11(3):e0150458. PubMed ID: 26934377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis.
    Li X; Duan X; Jiang H; Sun Y; Tang Y; Yuan Z; Guo J; Liang W; Chen L; Yin J; Ma H; Wang J; Zhang D
    Plant Physiol; 2006 Aug; 141(4):1167-84. PubMed ID: 16896230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of an NADP-malic enzyme gene in rice (Oryza sativa. L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance.
    Liu S; Cheng Y; Zhang X; Guan Q; Nishiuchi S; Hase K; Takano T
    Plant Mol Biol; 2007 May; 64(1-2):49-58. PubMed ID: 17245561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rice FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (OsFKF1) promotes flowering independent of photoperiod.
    Han SH; Yoo SC; Lee BD; An G; Paek NC
    Plant Cell Environ; 2015 Dec; 38(12):2527-40. PubMed ID: 25850808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time.
    Quesada V; Macknight R; Dean C; Simpson GG
    EMBO J; 2003 Jun; 22(12):3142-52. PubMed ID: 12805228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. OsPIPK 1, a rice phosphatidylinositol monophosphate kinase, regulates rice heading by modifying the expression of floral induction genes.
    Ma H; Xu SP; Luo D; Xu ZH; Xue HW
    Plant Mol Biol; 2004 Jan; 54(2):295-310. PubMed ID: 15159629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large-scale, lineage-specific expansion of a bric-a-brac/tramtrack/broad complex ubiquitin-ligase gene family in rice.
    Gingerich DJ; Hanada K; Shiu SH; Vierstra RD
    Plant Cell; 2007 Aug; 19(8):2329-48. PubMed ID: 17720868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The promoter of the rice gene GOS2 is active in various different monocot tissues and binds rice nuclear factor ASF-1.
    de Pater BS; van der Mark F; Rueb S; Katagiri F; Chua NH; Schilperoort RA; Hensgens LA
    Plant J; 1992 Nov; 2(6):837-44. PubMed ID: 1302635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antagonistic interactions between Arabidopsis K-homology domain genes uncover PEPPER as a positive regulator of the central floral repressor FLOWERING LOCUS C.
    Ripoll JJ; Rodríguez-Cazorla E; González-Reig S; Andújar A; Alonso-Cantabrana H; Perez-Amador MA; Carbonell J; Martínez-Laborda A; Vera A
    Dev Biol; 2009 Sep; 333(2):251-62. PubMed ID: 19576878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vernalization response in perennial ryegrass (Lolium perenne L.) involves orthologues of diploid wheat (Triticum monococcum) VRN1 and rice (Oryza sativa) Hd1.
    Andersen JR; Jensen LB; Asp T; Lübberstedt T
    Plant Mol Biol; 2006 Mar; 60(4):481-94. PubMed ID: 16525886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular cloning and characterization of a novel SNAP25-type protein gene OsSNAP32 in rice (Oryza sativa L.).
    Bao YM; Wang JF; Huang J; Zhang HS
    Mol Biol Rep; 2008 Jun; 35(2):145-52. PubMed ID: 17380428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hd1,a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7.
    Nemoto Y; Nonoue Y; Yano M; Izawa T
    Plant J; 2016 May; 86(3):221-33. PubMed ID: 26991872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar.
    Zhang X; Zong J; Liu J; Yin J; Zhang D
    J Integr Plant Biol; 2010 Nov; 52(11):1016-26. PubMed ID: 20977659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential interactions of the autonomous pathway RRM proteins and chromatin regulators in the silencing of Arabidopsis targets.
    Bäurle I; Dean C
    PLoS One; 2008 Jul; 3(7):e2733. PubMed ID: 18628965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Puf family of RNA-binding proteins in plants: phylogeny, structural modeling, activity and subcellular localization.
    Tam PP; Barrette-Ng IH; Simon DM; Tam MW; Ang AL; Muench DG
    BMC Plant Biol; 2010 Mar; 10():44. PubMed ID: 20214804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular cloning, expression and subcellular localization of a BiP homolog from rice endosperm tissue.
    Muench DG; Wu Y; Zhang Y; Li X; Boston RS; Okita TW
    Plant Cell Physiol; 1997 Apr; 38(4):404-12. PubMed ID: 9177027
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet (Beta vulgaris).
    Reeves PA; He Y; Schmitz RJ; Amasino RM; Panella LW; Richards CM
    Genetics; 2007 May; 176(1):295-307. PubMed ID: 17179080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.