BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 16820953)

  • 1. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans.
    Merfort M; Herrmann U; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):443-51. PubMed ID: 16820953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation.
    Merfort M; Herrmann U; Ha SW; Elfari M; Bringer-Meyer S; Görisch H; Sahm H
    Biotechnol J; 2006 May; 1(5):556-63. PubMed ID: 16892291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid.
    Elfari M; Ha SW; Bremus C; Merfort M; Khodaverdi V; Herrmann U; Sahm H; Görisch H
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):668-74. PubMed ID: 15735967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343.
    Herrmann U; Merfort M; Jeude M; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):86-90. PubMed ID: 14564486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation.
    Yuan J; Wu M; Lin J; Yang L
    BMC Biotechnol; 2016 May; 16(1):42. PubMed ID: 27189063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans.
    Hölscher T; Schleyer U; Merfort M; Bringer-Meyer S; Görisch H; Sahm H
    J Mol Microbiol Biotechnol; 2009; 16(1-2):6-13. PubMed ID: 18957858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning of a gluconate/polyol dehydrogenase gene from Gluconobacter suboxydans IFO 12528, characterisation of the enzyme and its use for the production of 5-ketogluconate in a recombinant Escherichia coli strain.
    Salusjärvi T; Povelainen M; Hvorslev N; Eneyskaya EV; Kulminskaya AA; Shabalin KA; Neustroev KN; Kalkkinen N; Miasnikov AN
    Appl Microbiol Biotechnol; 2004 Aug; 65(3):306-14. PubMed ID: 15060755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Optimization of the fermentation conditions for 5-keto-D-gluconic acid production].
    Li B; Pan H; Sun W; Cheng Y; Xie Z; Zhang J
    Sheng Wu Gong Cheng Xue Bao; 2014 Sep; 30(9):1486-90. PubMed ID: 25720164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose oxidation by Gluconobacter oxydans: characterization in shaking-flasks, scale-up and optimization of the pH profile.
    Silberbach M; Maier B; Zimmermann M; Büchs J
    Appl Microbiol Biotechnol; 2003 Jul; 62(1):92-8. PubMed ID: 12835926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of 5-keto-d-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy.
    Yuan J; Wu M; Lin J; Yang L
    J Biosci Bioeng; 2016 Jul; 122(1):10-6. PubMed ID: 26896860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single membrane-bound enzyme catalyzes the conversion of 2,5-diketo-d-gluconate to 4-keto-d-arabonate in d-glucose oxidative fermentation by Gluconobacter oxydans NBRC 3292.
    Tazoe M; Oishi H; Kobayashi S; Hoshino T
    Biosci Biotechnol Biochem; 2016 Aug; 80(8):1505-12. PubMed ID: 27010909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a novel promoter gHp0169 for gene expression in Gluconobacter oxydans.
    Shi L; Li K; Zhang H; Liu X; Lin J; Wei D
    J Biotechnol; 2014 Apr; 175():69-74. PubMed ID: 24530540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans.
    Meyer M; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3457-66. PubMed ID: 22790543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New developments in oxidative fermentation.
    Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directional enhancement of 2-keto-gluconic acid production from enzymatic hydrolysate by acetic acid-mediated bio-oxidation with Gluconobacter oxydans.
    Dai L; Jiang W; Jia R; Zhou X; Xu Y
    Bioresour Technol; 2022 Mar; 348():126811. PubMed ID: 35131459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gluconobacter oxydans: its biotechnological applications.
    Gupta A; Singh VK; Qazi GN; Kumar A
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):445-56. PubMed ID: 11361077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H.
    Hölscher T; Görisch H
    J Bacteriol; 2006 Nov; 188(21):7668-76. PubMed ID: 16936032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343.
    Gätgens C; Degner U; Bringer-Meyer S; Herrmann U
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):553-9. PubMed ID: 17497148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gluconobacter oxydans NAD-dependent, D-fructose reducing, polyol dehydrogenases activity: screening, medium optimisation and application for enzymatic polyol production.
    Parmentier S; Beauprez J; Arnaut F; Soetaert W; Vandamme EJ
    Biotechnol Lett; 2005 Mar; 27(5):305-11. PubMed ID: 15834790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.