BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16821068)

  • 1. M5 mesoscopic and macroscopic models for mesenchymal motion.
    Hillen T
    J Math Biol; 2006 Oct; 53(4):585-616. PubMed ID: 16821068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From a discrete to a continuous model of biological cell movement.
    Turner S; Sherratt JA; Painter KJ; Savill NJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021910. PubMed ID: 14995494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic modelling of biased cell migration and collagen matrix modification.
    Groh A; Louis AK
    J Math Biol; 2010 Nov; 61(5):617-47. PubMed ID: 20012047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior.
    Chandran PL; Barocas VH
    J Biomech Eng; 2006 Apr; 128(2):259-70. PubMed ID: 16524339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modelling of glioma growth: the use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion.
    Painter KJ; Hillen T
    J Theor Biol; 2013 Apr; 323():25-39. PubMed ID: 23376578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of adhesion on cellular invasion processes in cancer and development.
    Painter KJ; Armstrong NJ; Sherratt JA
    J Theor Biol; 2010 Jun; 264(3):1057-67. PubMed ID: 20346958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion.
    Gerisch A; Chaplain MA
    J Theor Biol; 2008 Feb; 250(4):684-704. PubMed ID: 18068728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agent-based modeling traction force mediated compaction of cell-populated collagen gels using physically realistic fibril mechanics.
    Reinhardt JW; Gooch KJ
    J Biomech Eng; 2014 Feb; 136(2):021024. PubMed ID: 24317298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic gel-strip model for the simulation of migrating cells.
    Sakamoto Y; Prudhomme S; Zaman MH
    Ann Biomed Eng; 2011 Nov; 39(11):2735-49. PubMed ID: 21800204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the extracellular matrix in tumor cell metastasis.
    Stracke ML; Murata J; Aznavoorian S; Liotta LA
    In Vivo; 1994; 8(1):49-58. PubMed ID: 8054511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of cell migration within the extracellular matrix based on a phenotypic switching mechanism.
    Chauviere A; Preziosi L; Byrne H
    Math Med Biol; 2010 Sep; 27(3):255-81. PubMed ID: 19942606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamics and convection enhanced macromolecular fluid transport in soft biological tissues: Application to solid tumor.
    Dey B; Sekhar GPR
    J Theor Biol; 2016 Apr; 395():62-86. PubMed ID: 26851443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization.
    Checa S; Rausch MK; Petersen A; Kuhl E; Duda GN
    Biomech Model Mechanobiol; 2015 Jan; 14(1):1-13. PubMed ID: 24718853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion.
    Anderson AR
    Math Med Biol; 2005 Jun; 22(2):163-86. PubMed ID: 15781426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A force based model of individual cell migration with discrete attachment sites and random switching terms.
    Dallon JC; Scott M; Smith WV
    J Biomech Eng; 2013 Jul; 135(7):71008. PubMed ID: 23722520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random walk models in biology.
    Codling EA; Plank MJ; Benhamou S
    J R Soc Interface; 2008 Aug; 5(25):813-34. PubMed ID: 18426776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061201. PubMed ID: 16485937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the mechanical properties of human skin: towards a 3D discrete fibre model.
    Jor JW; Nash MP; Nielsen PM; Hunter PJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6641-4. PubMed ID: 18003548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanics and chemotaxis in the morphogenesis of vascular networks.
    Tosin A; Ambrosi D; Preziosi L
    Bull Math Biol; 2006 Oct; 68(7):1819-36. PubMed ID: 16817028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.