BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 16821831)

  • 1. Energy transfer between polyatomic molecules. 3. Energy transfer quantities and probability density functions in self-collisions of benzene, toluene, p-xylene and azulene.
    Bernshtein V; Oref I
    J Phys Chem A; 2006 Jul; 110(27):8477-87. PubMed ID: 16821831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy transfer between polyatomic molecules II: Energy transfer quantities and probability density functions in benzene, toluene, p-xylene, and azulene collisions.
    Bernshtein V; Oref I
    J Phys Chem A; 2006 Feb; 110(4):1541-51. PubMed ID: 16435815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy transfer between polyatomic molecules. 1. Gateway modes, energy transfer quantities and energy transfer probability density functions in benzene-benzene and Ar-benzene collisions.
    Bernshtein V; Oref I
    J Phys Chem B; 2005 May; 109(17):8310-9. PubMed ID: 16851974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy transfer between azulene and krypton: comparison between experiment and computation.
    Bernshtein V; Oref I
    J Chem Phys; 2006 Oct; 125(13):133105. PubMed ID: 17029431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy transfer of highly vibrationally excited azulene: collisions between azulene and krypton.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Feb; 124(5):054302. PubMed ID: 16468864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collisional relaxation of the three vibrationally excited difluorobenzene isomers by collisions with CO2: effect of donor vibrational mode.
    Mitchell DG; Johnson AM; Johnson JA; Judd KA; Kim K; Mayhew M; Powell AL; Sevy ET
    J Phys Chem A; 2008 Feb; 112(6):1157-67. PubMed ID: 18201072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transfer of highly vibrationally excited azulene. III. Collisions between azulene and argon.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Nov; 125(20):204309. PubMed ID: 17144702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-dependent dynamics of large-DeltaE collisions: highly vibrationally excited azulene (E=20 390 and 38 580 cm(-1)) with CO2.
    Yuan L; Du J; Mullin AS
    J Chem Phys; 2008 Jul; 129(1):014303. PubMed ID: 18624476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine.
    Johnson JA; Kim K; Mayhew M; Mitchell DG; Sevy ET
    J Phys Chem A; 2008 Mar; 112(12):2543-52. PubMed ID: 18321080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collisions of highly vibrationally excited pyrazine (E vib = 37,900 cm(-1)) with HOD: state-resolved probing of strong and weak collisions.
    Havey DK; Liu Q; Li Z; Elioff M; Mullin AS
    J Phys Chem A; 2007 Dec; 111(51):13321-9. PubMed ID: 18052137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collisional energy transfer probability densities P(E, J; E', J') for monatomics colliding with large molecules.
    Barker JR; Weston RE
    J Phys Chem A; 2010 Oct; 114(39):10619-33. PubMed ID: 20843047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetically controlled selective ionization study on the efficient collisional energy transfer in the deactivation of highly vibrationally excited trans-stilbene.
    Frerichs H; Hollerbach M; Lenzer T; Luther K
    J Phys Chem A; 2006 Mar; 110(9):3179-85. PubMed ID: 16509642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy transfer of highly vibrationally excited naphthalene. I. Translational collision energy dependence.
    Liu CL; Hsu HC; Hsu YC; Ni CK
    J Chem Phys; 2007 Sep; 127(10):104311. PubMed ID: 17867751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PECT model analysis and predictions of experimental collisional energy transfer probabilities P(E',E) and moments for azulene and biphenylene.
    Lenzer T; Luther K; Nilsson D; Nordholm S
    J Phys Chem B; 2005 May; 109(17):8325-31. PubMed ID: 16851976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical theory of collisional energy transfer in molecular collisions. trans-stilbene deactivation by argon, carbon dioxide, and n-heptane.
    Nilsson D; Nordholm S
    J Phys Chem A; 2006 Mar; 110(9):3289-96. PubMed ID: 16509655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of angular momentum in collision-induced vibration-rotation relaxation in polyatomics.
    McCaffery AJ; Osborne MA; Marsh RJ; Lawrance WD; Waclawik ER
    J Chem Phys; 2004 Jul; 121(1):169-80. PubMed ID: 15260535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quenching of highly vibrationally excited pyrimidine by collisions with CO2.
    Johnson JA; Duffin AM; Hom BJ; Jackson KE; Sevy ET
    J Chem Phys; 2008 Feb; 128(5):054304. PubMed ID: 18266447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxation dynamics of highly vibrationally excited picoline isomers (E(vib) = 38 300 cm(-1)) with CO2: the role of state density in impulsive collisions.
    Miller EM; Murat L; Bennette N; Hayes M; Mullin AS
    J Phys Chem A; 2006 Mar; 110(9):3266-72. PubMed ID: 16509652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full state-resolved energy gain profiles of CO2 (J = 2-80) from collisions of highly vibrationally excited molecules. 1. Relaxation of pyrazine (E = 37900 cm(-1)).
    Havey DK; Du J; Liu Q; Mullin AS
    J Phys Chem A; 2010 Jan; 114(3):1569-80. PubMed ID: 20000656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accounting for the dependence of P(E',E) on the maximum impact parameter in classical trajectory calculations: application to the H2O-H2O collisional relaxation.
    Bustos-MarĂșn RA; Coronado EA; Ferrero JC
    J Chem Phys; 2007 Oct; 127(15):154305. PubMed ID: 17949147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.