These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 16821882)

  • 1. A lattice-gas cellular automaton to model diffusion in restricted geometries.
    Demontis P; Pazzona FG; Suffritti GB
    J Phys Chem B; 2006 Jul; 110(27):13554-9. PubMed ID: 16821882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion in tight confinement: a lattice-gas cellular automaton approach. I. Structural equilibrium properties.
    Demontis P; Pazzona FG; Suffritti GB
    J Chem Phys; 2007 May; 126(19):194709. PubMed ID: 17523830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion in tight confinement: a lattice-gas cellular automaton approach. II. Transport properties.
    Demontis P; Pazzona FG; Suffritti GB
    J Chem Phys; 2007 May; 126(19):194710. PubMed ID: 17523831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introducing a cellular automaton as an empirical model to study static and dynamic properties of molecules adsorbed in zeolites.
    Demontis P; Pazzona FG; Suffritti GB
    J Phys Chem B; 2008 Oct; 112(39):12444-52. PubMed ID: 18774847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From thermodynamic cell models to partitioning cellular automata for diffusion in zeolites. I. Structure of the algorithm.
    Pazzona FG; Demontis P; Suffritti GB
    J Chem Phys; 2009 Dec; 131(23):234703. PubMed ID: 20025338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion of a branched polymer chain in confinement: a Monte Carlo study.
    Romiszowski P; Sikorski A
    J Chem Phys; 2006 Sep; 125(10):104901. PubMed ID: 16999544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronous equilibrium model for the diffusion of mutually exclusive particles in a heterogeneous lattice of adsorption sites.
    Pazzona FG; Demontis P; Suffritti GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063306. PubMed ID: 23848805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systems biology approach to the blood-aluminium problem: the application and testing of a computational model.
    Beardmore J; Rugg G; Exley C
    J Inorg Biochem; 2007 Sep; 101(9):1187-91. PubMed ID: 17629565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From thermodynamic cell models to partitioning cellular automata for diffusion in zeolites. II. Static and dynamic properties.
    Pazzona FG; Demontis P; Suffritti GB
    J Chem Phys; 2009 Dec; 131(23):234704. PubMed ID: 20025339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR diffusometry with beds of nanoporous host particles: an assessment of mass transfer in compartmented two-phase systems.
    Krutyeva M; Kärger J
    Langmuir; 2008 Sep; 24(18):10474-9. PubMed ID: 18710267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ProtNet: a tool for stochastic simulations of protein interaction networks dynamics.
    Bernaschi M; Castiglione F; Ferranti A; Gavrila C; Tinti M; Cesareni G
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S4. PubMed ID: 17430571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between steps and nonequilibrium effects in surface diffusion for a lattice-gas model of OW(110).
    Masín M; Vattulainen I; Ala-Nissila T; Chvoj Z
    J Chem Phys; 2007 Mar; 126(11):114705. PubMed ID: 17381226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion in confined geometries.
    Burada PS; Hänggi P; Marchesoni F; Schmid G; Talkner P
    Chemphyschem; 2009 Jan; 10(1):45-54. PubMed ID: 19025741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral diffusion of molecules in two-component lipid bilayer: a Monte Carlo simulation study.
    Sugár IP; Biltonen RL
    J Phys Chem B; 2005 Apr; 109(15):7373-86. PubMed ID: 16851844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How proteins squeeze through polymer networks: a Cartesian lattice study.
    Wedemeier A; Merlitz H; Wu CX; Langowski J
    J Chem Phys; 2009 Aug; 131(6):064905. PubMed ID: 19691409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A lattice Monte Carlo simulation of the FePt alloy using a first-principles renormalized four-body interaction.
    Misumi Y; Masatsuji S; Sahara R; Ishii S; Ohno K
    J Chem Phys; 2008 Jun; 128(23):234702. PubMed ID: 18570514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice-gas modeling of CO adlayers on Pd(100).
    Liu DJ
    J Chem Phys; 2004 Sep; 121(9):4352-7. PubMed ID: 15332986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining reactive and configurational-bias Monte Carlo: confinement influence on the propene metathesis reaction system in various zeolites.
    Jakobtorweihen S; Hansen N; Keil FJ
    J Chem Phys; 2006 Dec; 125(22):224709. PubMed ID: 17176156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice.
    Schneider U; Hackermüller L; Will S; Best T; Bloch I; Costi TA; Helmes RW; Rasch D; Rosch A
    Science; 2008 Dec; 322(5907):1520-5. PubMed ID: 19056980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monomer adsorption on terraces and nanotubes.
    Phares AJ; Grumbine DW; Wunderlich FJ
    Langmuir; 2007 Jan; 23(2):558-73. PubMed ID: 17209607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.