These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16821903)

  • 1. Modeling the influence of a laser pulse on the potential energy surface in optimal molecular control theory.
    Farnum JD; Gidofalvi G; Mazziotti DA
    J Chem Phys; 2006 Jun; 124(23):234103. PubMed ID: 16821903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum control of molecular motion including electronic polarization effects with a two-stage toolkit.
    Balint-Kurti GG; Manby FR; Ren Q; Artamonov M; Ho TS; Rabitz H
    J Chem Phys; 2005 Feb; 122(8):84110. PubMed ID: 15836023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variational reduced-density-matrix theory applied to the potential energy surfaces of carbon monoxide in the presence of electric fields.
    Gidofalvi G; Mazziotti DA
    J Phys Chem A; 2006 Apr; 110(16):5481-6. PubMed ID: 16623479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of an infrared laser pulse to control the multiphoton dissociation of the Fe-CO bond in CO-heme compounds.
    Sharma S; Singh H; Harvey JN; Balint-Kurti GG
    J Chem Phys; 2010 Nov; 133(17):174103. PubMed ID: 21054002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of diatomic molecules in an external electromagnetic field from first quantum mechanical principles.
    Sindelka M; Moiseyev N
    J Phys Chem A; 2006 Apr; 110(16):5561-71. PubMed ID: 16623490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Born-Oppenheimer quantum chemistry on the fly with continuous path branching due to nonadiabatic and intense optical interactions.
    Yonehara T; Takatsuka K
    J Chem Phys; 2010 Jun; 132(24):244102. PubMed ID: 20590176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio design of picosecond infrared laser pulses for controlling vibrational-rotational excitation of CO molecules.
    Herrmann T; Ren Q; Balint-Kurti GG; Manby FR
    J Chem Phys; 2007 Jun; 126(22):224309. PubMed ID: 17581056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of nuclear quantum effects on the molecular structure of bihalides and the hydrogen fluoride dimer.
    Swalina C; Hammes-Schiffer S
    J Phys Chem A; 2005 Nov; 109(45):10410-7. PubMed ID: 16833338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalization of classical mechanics for nuclear motions on nonadiabatically coupled potential energy surfaces in chemical reactions.
    Takatsuka K
    J Phys Chem A; 2007 Oct; 111(41):10196-204. PubMed ID: 17676718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of ultrafast nonresonant multiphoton transitions in polyatomic molecules: basics and application to optimal control theory.
    May V; Ambrosek D; Oppel M; González L
    J Chem Phys; 2007 Oct; 127(14):144102. PubMed ID: 17935381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum control of molecular vibrational and rotational excitations in a homonuclear diatomic molecule: a full three-dimensional treatment with polarization forces.
    Ren Q; Balint-Kurti GG; Manby FR; Artamonov M; Ho TS; Rabitz H
    J Chem Phys; 2006 Jan; 124(1):14111. PubMed ID: 16409028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-the-fly, electric-field-driven, coupled electron-nuclear dynamics.
    Jones GA; Acocella A; Zerbetto F
    J Phys Chem A; 2008 Oct; 112(40):9650-6. PubMed ID: 18767783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser control of vibrational excitation in carboxyhemoglobin: a quantum wave packet study.
    Meier C; Heitz MC
    J Chem Phys; 2005 Jul; 123(4):044504. PubMed ID: 16095366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonadiabatic chemical dynamics in an intense laser field: electronic wave packet coupled with classical nuclear motions.
    Yagi K; Takatsuka K
    J Chem Phys; 2005 Dec; 123(22):224103. PubMed ID: 16375466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum optimal control of electron ring currents in chiral aromatic molecules.
    Kanno M; Hoki K; Kono H; Fujimura Y
    J Chem Phys; 2007 Nov; 127(20):204314. PubMed ID: 18052434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Born-Oppenheimer electronic and nuclear wavepacket dynamics.
    Yonehara T; Takahashi S; Takatsuka K
    J Chem Phys; 2009 Jun; 130(21):214113. PubMed ID: 19508062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond Förster resonance energy transfer in biological and nanoscale systems.
    Beljonne D; Curutchet C; Scholes GD; Silbey RJ
    J Phys Chem B; 2009 May; 113(19):6583-99. PubMed ID: 19331333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid local/global optimal control algorithm for dissipative systems with time-dependent targets: formulation and application to relaxing adsorbates.
    Beyvers S; Saalfrank P
    J Chem Phys; 2008 Feb; 128(7):074104. PubMed ID: 18298137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical determination of the standard reduction potentials of pheophytin-a in N,N-dimethyl formamide and membrane.
    Mehta N; Datta SN
    J Phys Chem B; 2007 Jun; 111(25):7210-7. PubMed ID: 17536851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.