These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 16821904)
1. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. Fennell CJ; Gezelter JD J Chem Phys; 2006 Jun; 124(23):234104. PubMed ID: 16821904 [TBL] [Abstract][Full Text] [Related]
2. Pairwise Alternatives to Ewald Summation for Calculating Long-Range Electrostatics in Ionic Liquids. McCann BW; Acevedo O J Chem Theory Comput; 2013 Feb; 9(2):944-50. PubMed ID: 26588737 [TBL] [Abstract][Full Text] [Related]
3. Amorphous silica modeled with truncated and screened Coulomb interactions: a molecular dynamics simulation study. Carré A; Berthier L; Horbach J; Ispas S; Kob W J Chem Phys; 2007 Sep; 127(11):114512. PubMed ID: 17887862 [TBL] [Abstract][Full Text] [Related]
4. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations. Ojeda-May P; Pu J J Chem Phys; 2015 Nov; 143(17):174111. PubMed ID: 26547162 [TBL] [Abstract][Full Text] [Related]
5. Application of the Wolf damped Coulomb method to simulations of SiC. Ma Y; Garofalini SH J Chem Phys; 2005 Mar; 122(9):094508. PubMed ID: 15836151 [TBL] [Abstract][Full Text] [Related]
6. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water. Fukuda I; Kamiya N; Yonezawa Y; Nakamura H J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamics scheme for precise estimation of electrostatic interaction via zero-dipole summation principle. Fukuda I; Yonezawa Y; Nakamura H J Chem Phys; 2011 Apr; 134(16):164107. PubMed ID: 21528950 [TBL] [Abstract][Full Text] [Related]
8. On the Numerical Accuracy of Ewald, Smooth Particle Mesh Ewald, and Staggered Mesh Ewald Methods for Correlated Molecular Systems. Wang H; Zhang P; Schütte C J Chem Theory Comput; 2012 Sep; 8(9):3243-56. PubMed ID: 26605733 [TBL] [Abstract][Full Text] [Related]
9. The zero-multipole summation method for estimating electrostatic interactions in molecular dynamics: analysis of the accuracy and application to liquid systems. Fukuda I; Kamiya N; Nakamura H J Chem Phys; 2014 May; 140(19):194307. PubMed ID: 24852538 [TBL] [Abstract][Full Text] [Related]
10. A molecular-dynamics simulation study on the dependence of Lennard-Jones gas-liquid phase diagram on the long-range part of the interactions. Ou-Yang WZ; Lu ZY; Shi TF; Sun ZY; An LJ J Chem Phys; 2005 Dec; 123(23):234502. PubMed ID: 16392926 [TBL] [Abstract][Full Text] [Related]
12. Simplistic Coulomb forces in molecular dynamics: comparing the Wolf and shifted-force approximations. Hansen JS; Schrøder TB; Dyre JC J Phys Chem B; 2012 May; 116(19):5738-43. PubMed ID: 22497264 [TBL] [Abstract][Full Text] [Related]
13. Effects of Long-Range Electrostatics on Time-Dependent Stokes Shift Calculations. Furse KE; Corcelli SA J Chem Theory Comput; 2009 Aug; 5(8):1959-67. PubMed ID: 26613139 [TBL] [Abstract][Full Text] [Related]
14. Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations. Sagui C; Pedersen LG; Darden TA J Chem Phys; 2004 Jan; 120(1):73-87. PubMed ID: 15267263 [TBL] [Abstract][Full Text] [Related]
15. Gaussian split Ewald: A fast Ewald mesh method for molecular simulation. Shan Y; Klepeis JL; Eastwood MP; Dror RO; Shaw DE J Chem Phys; 2005 Feb; 122(5):54101. PubMed ID: 15740304 [TBL] [Abstract][Full Text] [Related]
16. Electrostatic interactions in dissipative particle dynamics using the Ewald sums. González-Melchor M; Mayoral E; Velázquez ME; Alejandre J J Chem Phys; 2006 Dec; 125(22):224107. PubMed ID: 17176134 [TBL] [Abstract][Full Text] [Related]
17. On mesh-based Ewald methods: optimal parameters for two differentiation schemes. Stern HA; Calkins KG J Chem Phys; 2008 Jun; 128(21):214106. PubMed ID: 18537414 [TBL] [Abstract][Full Text] [Related]
18. Atomic charges derived from electrostatic potentials for molecular and periodic systems. Chen DL; Stern AC; Space B; Johnson JK J Phys Chem A; 2010 Sep; 114(37):10225-33. PubMed ID: 20795694 [TBL] [Abstract][Full Text] [Related]
19. Notes on "Ewald summation of electrostatic multipole interactions up to quadrupolar level" [J. Chem. Phys. 119, 7471 (2003)]. Laino T; Hutter J J Chem Phys; 2008 Aug; 129(7):074102. PubMed ID: 19044755 [TBL] [Abstract][Full Text] [Related]
20. Effects of long-range electrostatic forces on simulated protein folding kinetics. Robertson A; Luttmann E; Pande VS J Comput Chem; 2008 Apr; 29(5):694-700. PubMed ID: 17849394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]