These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16821905)

  • 1. Symplectic splitting operator methods for the time-dependent Schrodinger equation.
    Blanes S; Casas F; Murua A
    J Chem Phys; 2006 Jun; 124(23):234105. PubMed ID: 16821905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradient symplectic algorithms for solving the radial Schrodinger equation.
    Chin SA; Anisimov P
    J Chem Phys; 2006 Feb; 124(5):054106. PubMed ID: 16468850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics integration and molecular vibrational theory. I. New symplectic integrators.
    Janezic D; Praprotnik M; Merzel F
    J Chem Phys; 2005 May; 122(17):174101. PubMed ID: 15910017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New closed Newton-Cotes type formulae as multilayer symplectic integrators.
    Simos TE
    J Chem Phys; 2010 Sep; 133(10):104108. PubMed ID: 20849165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules.
    Kamberaj H; Low RJ; Neal MP
    J Chem Phys; 2005 Jun; 122(22):224114. PubMed ID: 15974658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Symplectic and energy-conserving algorithms for solving magnetic field trajectories.
    Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066401. PubMed ID: 18643377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient geometric integrators for nonadiabatic quantum dynamics. I. The adiabatic representation.
    Choi S; Vaníček J
    J Chem Phys; 2019 May; 150(20):204112. PubMed ID: 31153205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exponentially fitted open Newton-Cotes differential methods as multilayer symplectic integrators.
    Vanden Berghe G; Van Daele M
    J Chem Phys; 2010 May; 132(20):204107. PubMed ID: 20515088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symplectic time-average propagators for the Schrödinger equation with a time-dependent Hamiltonian.
    Blanes S; Casas F; Murua A
    J Chem Phys; 2017 Mar; 146(11):114109. PubMed ID: 28330361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using preconditioned adaptive step size Runge-Kutta methods for solving the time-dependent Schrödinger equation.
    Tremblay JC; Carrington T
    J Chem Phys; 2004 Dec; 121(23):11535-41. PubMed ID: 15634118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explicit symplectic integrators of molecular dynamics algorithms for rigid-body molecules in the canonical, isobaric-isothermal, and related ensembles.
    Okumura H; Itoh SG; Okamoto Y
    J Chem Phys; 2007 Feb; 126(8):084103. PubMed ID: 17343436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A symplectic integration method for elastic filaments.
    Ladd AJ; Misra G
    J Chem Phys; 2009 Mar; 130(12):124909. PubMed ID: 19334891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate time propagation for the Schrodinger equation with an explicitly time-dependent Hamiltonian.
    Kormann K; Holmgren S; Karlsson HO
    J Chem Phys; 2008 May; 128(18):184101. PubMed ID: 18532793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic discrete Hamiltonian variational integrators.
    Holm DD; Tyranowski TM
    BIT Numer Math; 2018; 58(4):1009-1048. PubMed ID: 30894795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using simultaneous diagonalization and trace minimization to make an efficient and simple multidimensional basis for solving the vibrational Schrodinger equation.
    Dawes R; Carrington T
    J Chem Phys; 2006 Feb; 124(5):054102. PubMed ID: 16468846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Family of Gaussian wavepacket dynamics methods from the perspective of a nonlinear Schrödinger equation.
    J L Vaníček J
    J Chem Phys; 2023 Jul; 159(1):. PubMed ID: 37417753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier methods for the perturbed harmonic oscillator in linear and nonlinear Schrödinger equations.
    Bader P; Blanes S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046711. PubMed ID: 21599338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-order geometric integrators for representation-free Ehrenfest dynamics.
    Choi S; Vaníček J
    J Chem Phys; 2021 Sep; 155(12):124104. PubMed ID: 34598577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-reversible and norm-conserving high-order integrators for the nonlinear time-dependent Schrödinger equation: Application to local control theory.
    Roulet J; Vaníček J
    J Chem Phys; 2021 Apr; 154(15):154106. PubMed ID: 33887925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-preserving integrators for dissipative systems based on reversible- irreversible splitting.
    Shang X; Öttinger HC
    Proc Math Phys Eng Sci; 2020 Feb; 476(2234):20190446. PubMed ID: 32201474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.