These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16821951)

  • 21. Local composition in the vicinity of a protein molecule in an aqueous mixed solvent.
    Shulgin IL; Ruckenstein E
    J Phys Chem B; 2007 Apr; 111(15):3990-8. PubMed ID: 17388621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hofmeister effects in the restabilization of IgG--latex particles: testing Ruckenstein's theory.
    López-León T; Gea-Jódar PM; Bastos-González D; Ortega-Vinuesa JL
    Langmuir; 2005 Jan; 21(1):87-93. PubMed ID: 15620288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulations of macromolecules in protective and denaturing osmolytes: properties of mixed solvent systems and their effects on water and protein structure and dynamics.
    Beck DA; Bennion BJ; Alonso DO; Daggett V
    Methods Enzymol; 2007; 428():373-96. PubMed ID: 17875430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specific ion effects on interfacial water structure near macromolecules.
    Chen X; Yang T; Kataoka S; Cremer PS
    J Am Chem Soc; 2007 Oct; 129(40):12272-9. PubMed ID: 17880076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrophobic interaction adsorption of whey proteins: effect of temperature and salt concentration and thermodynamic analysis.
    Bonomo RC; Minim LA; Coimbra JS; Fontan RC; Mendes da Silva LH; Minim VP
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Nov; 844(1):6-14. PubMed ID: 16844436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular computations of preferential interaction coefficients of proteins.
    Shukla D; Shinde C; Trout BL
    J Phys Chem B; 2009 Sep; 113(37):12546-54. PubMed ID: 19697945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preferential hydration of lysozyme in water/glycerol mixtures: a small-angle neutron scattering study.
    Sinibaldi R; Ortore MG; Spinozzi F; Carsughi F; Frielinghaus H; Cinelli S; Onori G; Mariani P
    J Chem Phys; 2007 Jun; 126(23):235101. PubMed ID: 17600444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Hofmeister ions on protein thermal stability: roles of ion hydration and peptide groups?
    Sedlák E; Stagg L; Wittung-Stafshede P
    Arch Biochem Biophys; 2008 Nov; 479(1):69-73. PubMed ID: 18782555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multicomponent diffusion of lysozyme in aqueous calcium chloride. The role of common-ion effects and protein-salt preferential interactions.
    Annunziata O; Paduano L; Albright JG
    J Phys Chem B; 2007 Sep; 111(35):10591-8. PubMed ID: 17696467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lysozyme-lysozyme and lysozyme-salt interactions in the aqueous saline solution: a new square-well potential.
    Chang BH; Bae YC
    Biomacromolecules; 2003; 4(6):1713-8. PubMed ID: 14606900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unraveling water's entropic mysteries: a unified view of nonpolar, polar, and ionic hydration.
    Ben-Amotz D; Underwood R
    Acc Chem Res; 2008 Aug; 41(8):957-67. PubMed ID: 18710198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Salt effects on the picosecond dynamics of lysozyme hydration water investigated by terahertz time-domain spectroscopy and an insight into the Hofmeister series for protein stability and solubility.
    Aoki K; Shiraki K; Hattori T
    Phys Chem Chem Phys; 2016 Jun; 18(22):15060-9. PubMed ID: 27193313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A theoretical analysis on hydration thermodynamics of proteins.
    Imai T; Harano Y; Kinoshita M; Kovalenko A; Hirata F
    J Chem Phys; 2006 Jul; 125(2):24911. PubMed ID: 16848615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Infrared spectroscopy of aqueous ionic salt mixtures at low concentrations: ion pairing in water.
    Max JJ; Chapados C
    J Chem Phys; 2007 Sep; 127(11):114509. PubMed ID: 17887859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding.
    Arakawa T; Timasheff SN
    Biochemistry; 1984 Dec; 23(25):5912-23. PubMed ID: 6525340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Explicit-water theory for the salt-specific effects and Hofmeister series in protein solutions.
    Kalyuzhnyi YV; Vlachy V
    J Chem Phys; 2016 Jun; 144(21):215101. PubMed ID: 27276970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical analysis on changes in thermodynamic quantities upon protein folding: essential role of hydration.
    Imai T; Harano Y; Kinoshita M; Kovalenko A; Hirata F
    J Chem Phys; 2007 Jun; 126(22):225102. PubMed ID: 17581082
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Statistical thermodynamics of casein aggregation: Effects of salts and water.
    Harton K; Shimizu S
    Biophys Chem; 2019 Apr; 247():34-42. PubMed ID: 30822572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of salt stoichiometry on protein-salt interactions determined by ternary diffusion in aqueous solutions.
    Annunziata O; Paduano L; Albright JG
    J Phys Chem B; 2006 Aug; 110(32):16139-47. PubMed ID: 16898772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hofmeister series reversal for lysozyme by change in pH and salt concentration: insights from electrophoretic mobility measurements.
    Salis A; Cugia F; Parsons DF; Ninham BW; Monduzzi M
    Phys Chem Chem Phys; 2012 Apr; 14(13):4343-6. PubMed ID: 22373665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.